十六夜環の既約元について

染谷 匠高木 俊一

1. 目的

2,3元体を係数体Fとする多項式環において

$$R = F[X]$$
 :十五夜環

$$R_0 = F[X^2, X^3]$$
: +六夜環

- 十五夜環では既約元分解は一意的。
- 十六夜環では一意的でない。

$$X^6 = (X^2)^3 = (X^3)^2$$

このように分解が二通り以上あるものが存在する。 よって十六夜環においては素元でない既約元が存在する。

十六夜環において既約元への分解が何通り出てくるか調べた。

ただし、今回は6次以下。

2. 定義

整域Rにおいて

単元uとは、あるvがあり uv=1 となること。

可約元とは、0でなく単元でない α, β の積として表せる元。

0でなく単元でなく、しかも可約でない元を既約元という。

xが素元であるとは、

 $\alpha\beta \in (x)$ なら $\alpha \in (x)$ または $\beta \in (x)$

即ち、 $\alpha\beta = x\gamma$ なら $\alpha = x\delta$ または $\beta = x\delta'$ となる。

3. 方法

3.1. Prolog **を使う**. 多項式をリストによって次のように表現する。

多項式: $a_0 + a_1X + \cdots + a_{n-1}X^{n-1} + a_nX^n$ を

リスト: $[a_0, a_1, \dots, a_{n-1}, a_n]$ で表す。

多項式の四則演算に対応したリストの四則演算のプログラム を作製。 3.2. 十五夜環での既約元. 四則演算をつかい、最小約元がもとの元と同じとき既約元である。

Table 1

2元体	全ての元(個)	既約元(個)		
1次	2	2		
2次	4	1		
3次	8	2		
4次	16	3		
5次	32	6		
6次	64	9		
合計	126	23		

Table 2

3元体	全ての元(個)	既約元(個)		
1次	3	3		
2次	9	3		
3次	27	8		
4次	81	18		
5次	243	48		
6次	729	116		
合計	1092	196		

3.3. 十六夜環での既約元. 十六夜環では割り算が一般にはできないので、可約元をまずつくり、その残りのうち0でも定数でもない元が既約元である。

Table 3

2元体	全ての元(個)	既約元(個)		
2次	2	2		
3次	4	4		
4次	8	5		
5次	16	8		
6次	32	13		
合計	62	32		

Table 4

3元体	全ての元(個)	既約元(個)		
2次	3	3		
3次	9	9		
4次	27	21		
5次	81	54		
6次	243	139		
合計	363	226		

3.4. 十六夜環での既約元分解. 6次の元で二通りの分解ができるものは次の通り

2元体では5個

Table 5

$$X^{6}$$
 = $(X^{2})^{3}$ = $(X^{3})^{2}$
 $X^{6} + 1$ = $(X^{2} + 1)(X^{4} + X^{2} + 1)$ = $(X^{3} + 1)^{2}$
 $X^{6} + X^{4}$ = $(X^{2})^{2}(X^{2} + 1)$ = $(X^{3} + X^{2})^{2}$
 $X^{6} + X^{5}$ = $X^{2}(X^{4} + X^{3})$ = $X^{3}(X^{3} + X^{2})$
 $X^{6} + X^{5} + X^{3} + X^{2}$ = $(X^{2} + 1)(X^{4} + X^{3} + X^{2})$ = $(X^{3} + 1)(X^{3} + X^{2})$

3元体では14個

Table 6

以上のような分解ができることから、 十六夜環では既約であっても素元ではない元が存在すること がわかった。

<u>Lemma</u>

 $f \in R_0, f$ はRで素元 f は R_0 でも素元

Lemmaの証明

 $f\in R_0\subset R$ をとり、f はRで素元とする。 $lpha,eta\in R_0$ によって、 $lphaeta\in (f)$ とすると、(f) はRで素イデアルだから $lpha\in (f)$ or $eta\in (f)$

よって $f = \alpha p$ or $f = \beta q$ $(p, q \in R)$ となる。

次に、 $p,q \in R_0$ を示す。

実際、

$$f=1+a_2X^2+\cdots+a_nX^n$$
 $lpha=1+b_2X^2+\cdots+b_nX^n$ $p=1+c_1X+\cdots+c_nX^n$ とおくと、 $f=\alpha p=1+c_1X+(c_2+b_1)X^2+\cdots\in R_0$ なので、 $c_1=0$ となるから $p\in R_0$ よって R_0 において $lpha\in (f)$ //

以上のことより、十六夜環の既約元は、以下の三種類のように分類ができる。

松:十六夜環で素元かつ十五夜環でも素元

<mark>竹</mark>:十六夜環では素元だが十五夜環では可約

梅:十六夜環で素元ではない

以前の、分解が二通り以上のものにおいて、一方にしか出ない既約元は<mark>梅</mark>です。

6次の元の既約性を判断するには、 9次の元まで分解することによって出来ました。

その結果、<mark>竹</mark>はなく、<mark>松</mark>か<mark>梅</mark>でした。

4. 考察

なぜ<mark>竹</mark>が出てこないのかを考えてみます。

たとえば、
$$f = X^4 + X^3 \in R_0$$
は $X^4 + X^3 = (X+1)X^3$ と分解できますが、 $X+1 \notin R_0$ なので R_0 ではこれ以上分解できません。しかしここで $g = X^2 \in R_0$ をとってくると、 $fg = (X^4 + X^3)X^2 = ((X+1)X^3)X^2$ $= ((X+1)X^2)X^3 = (X^3 + X^2)X^3$ $(X^3 + X^2), X^3 \in R_0$ となります。

よって、f に対して適当な $g \in R_0$ をもってくると別の分解ができるようになります。

したがって、

$$f = f_1 f_2$$

とした時に、仮に $f_1 \notin R_0$ であっても、

適当なħをとってきて、

$$f_1h \in R_0$$

となるような*h*を常にとってくることができるのではないか と考えました。

5. 証明

<mark>竹</mark>が出てこないことの証明

 $R_0 = F[X^2, X^3] \subset R = F[X], (F =$ 体) $f \in R_0$ は素元、R では可約とする。このとき矛盾することを示す。

まず、定数項が存在する場合において

 $f = 1 + a_2 X^2 + \cdots$ はRで可約なので分解してよい。

よって、
$$f = f_1 f_2$$
とすると、 $f_1 = 1 + b_1 X + \cdots$
 $f_2 = 1 + c_1 X + \cdots$

となり、 $c_1 = -b_1 (\neq 0)$ である。

$$f(X) = f_1(X)f_2(X)$$
で X を $-X$ に置き換えると $f(-X) = f_1(-X)f_2(-X)$

そこで $\bar{f}(X) = f(-X)$ とおくと $\bar{f} = \bar{f}_1\bar{f}_2$ $f\bar{f} = f_1\bar{f}_1f_2\bar{f}_2$ とすると $f_1\bar{f}_1, f_2\bar{f}_2 \in R_0$ になる。

fは素元なので、 $\varphi \in R_0$ があり $f_1 \bar{f}_1 = f \varphi$ と書ける。 よって $f \bar{f} = f \varphi f_2 \bar{f}_2$ $\bar{f} = \varphi f_2 \bar{f}_2$

またar fも素元である。 よって $\psi \in R_0$ により、 $f_2ar f_2 = ar f \psi$ 又は $\varphi = ar f \psi$ と書ける。

ならば $\bar{f} = \varphi \bar{f} \psi$ よって $\varphi \psi = 1$ これより φ , ψ は単元となるので、 $\varphi = \psi = 1$ としてよい。 よって $f = f_1 \bar{f}_1$ となる。

ならば $\bar{f} = \bar{f}\psi f_2 \bar{f}_2$ により、 $1 = \psi f_2 \bar{f}_2$ f_2 は単元になり、定数になる。

よって $f \in R_0$ で素元なら $f_1 \in R$ により $f = f_1 \bar{f}_1$ と書ける。

この時

<u>Lemma</u>

 $f_1 \in R$ 既約なら $f_2 \neq f_1, \bar{f}_1(f_2 \cup R)$ があり、 (定数倍の差は許されない) $q = f_1 f_2 \in R_0$ のようにとれる。

Lemmaの証明

 $f_1 \in R$ 既約とする。 $\varphi = f_1 \bar{f}_1$ は素元でないことを証明する。

$$f_1 = 1 - aX$$
 のとき $(a \neq 0)$
 $f_2 = 1 + aX + a^2X^2$ とおく。
 $g = f_1f_2 = 1 - a^3X^3 \in R_0$ g は既約
 $g\bar{g} = f_1\bar{f}_1 \cdot f_2\bar{f}_2 = \varphi\varphi_2$
 $f_1\bar{f}_1 = 1 - a^2X^2$, $f_2\bar{f}_2 = 1 + a^2X^2 + a^4X^4$
 \bar{g} も既約であり、 $f_1\bar{f}_1$ も既約である。
また、 $f_2\bar{f}_2$ は R_0 において g で割れないので、この分解は一意的でない。
よって、 $f_1\bar{f}_1$ は素元でない。

$$f_1 = 1 - aX + \cdots$$
 $(a \neq 0, 2次以上)$ $f_2 = 1 + aX$ とおく。 $g = f_1 f_2 \in R_0$ $g\bar{g} = f_1 \bar{f}_1 \cdot f_2 \bar{f}_2 \in R_0$ $\varphi = f_1 \bar{f}_1$ が素元なら、 $g = \varphi p, \quad \bar{g} = \bar{\varphi}\bar{p}$ となる。 よって、 $\varphi p\bar{g} = \varphi \varphi_2, \quad \varphi_2 = p\bar{g}, \quad \varphi_2 = f_2 \bar{f}_2, \quad \varphi_2 = 1 - a^2 X^2$ は2次式 g は3次以上なので矛盾。 //

すると $g\bar{g}=f_1\bar{f}_1f_2\bar{f}_2$ と二通りに分けられる。 よって、 $f=f_1\bar{f}_1\in R_0$ は素元でない既約元になり、 仮定に反する。

次に、定数項が存在しない場合において

$$f = f_1 f_2 = X^p (1 + a_1 X + a_2 X^2 + \cdots)$$
 $(p = 2, 3)$ とすると、 $f_1 = X^p$ $f_2 = 1 + a_1 X + a_2 X^2 + \cdots$

と分解できるので、

$$f\bar{f} = f_1\bar{f}_1 \cdot f_2\bar{f}_2$$

とすると、 $f_1\bar{f}_1, f_2\bar{f}_2 \in R_0$ となり、同様に証明できる。

よって、<mark>竹</mark>は存在しない。

6. まとめ

- ・十六夜環の既約元は<mark>松</mark>と<mark>梅</mark>の二種類に 分けられる。
- ・可約元も分解が二つ以上分けられる場合がある。 6次においては一つと二つに分けられる。 そして数は以下のようになる。

Table 7

2元体	2次	3次	4次	5次	6次	計
松	0	1	1	3	4	9
梅	2	3	4	5	9	23
可約元	0	0	3	8	19	30

Table 8

3元体	2次	3次	4次	5次	6次	計
松	1	2	6	16	38	63
梅	2	7	15	38	101	163
可約元	0	0	6	27	104	137

7. **これからの展望**

- ・一般にp元体n次で判別できるようにする。
- ・十六夜環の既約元の個数がわかる公式を求める。
- ・可約元で分解が一つと二つ以上の分類と、 その理由について。
- ・梅を紅梅、白梅に分類する。

紅梅: $f = g\bar{g}$ ($f \in R_0$ で既約, $g \in R$ で既約) で表せるもの

白梅:紅梅以外の<mark>梅</mark>

例 2元体において

$$f = 1 + X^2 = (1 + X)(1 - X)$$
 よって紅梅 $f = 1 + X^3 = (1 + X)(1 - X + X^2)$ よって白梅