RELATIONSHIPS BETWEEN BIRATIONAL INVARIANTS ω AND σ OF ALGEBRAIC PLANE CURVES

SHIGERU IITAKA GAKUSHUIN UNIVERSITY

CONTENTS

1. Introduction	3
2. main result	4
2.1. minimal models	4
2.2. types of pairs and # minimal pairs	5
2.3. ω for nonsingular plane curves	6
2.4. ω for small σ	6
2.5. graph	11
2.6. proof of the inequality (1) in the case when $\nu_1 \leq 3$	11
2.7. proof of the inequality (2) in the case when $r = 0$	13
2.8. lemma	13
2.9. proof of the inequality (1) in the case when $B \geq 3$	14
2.10. proof of the inequality (2) in the case when $B \geq 3$	14
3. fundamental equalities	15
3.1. two invariants	16
3.2. invariant $\widetilde{\mathcal{Z}}$	16
3.3. case in which $B \geq 3$	17
3.4. an estimate of ω	17
3.5. case in which $\omega = 12$	19
4. estimate of k in terms of ω	20
4.1. case when $k = \omega$	21
4.2. a formula for i	21
4.3. case in which $i = 0$	22
4.4. case when $k = \omega - 1$	22
5. case in which $\lambda \geq 1$	22
6. proof of the inequality (2) in the case when $k > 0$	22
7. case in which $\widetilde{\mathcal{Z}} = 0$	23
7.1. case in which $k > 0$	23
7.2. case in which $k=0$	25
8. case in which $\lambda \leq 0$	26
8.1. Lemma due to Tanaka and Matsuda	26
9. proof of the inequality (2) when $\lambda \leq 0$	29
9.1. case in which $k > 0$	29
9.2. case in which $p \ge 1$	30

1

9.3. case in which $p = 0, u \ge 1$	31
10. proof of the inequality (2) in the case when $\lambda \leq 0$ and $k=0$	32
10.1. case in which $t \geq 8$	32
10.2. case in which $t < 8$	33
10.3. quadratic estimate	33
10.4. case (1)	34
10.5. case (i)	34
10.6. case (ii)	34
10.7. case (iii)	35
10.8. case (2)	36
10.9. case in which $s = 1$	37
10.10. case in which $s=2$	37
10.11. case in which $s \geq 2$	37
11. proof of the inequality (1)	39
11.1. case (1)	39
11.2. case (2)	40
12. an inequality for curves with $g > 0$	40
12.1. final case	41
13. Matsuda's inequality	41
13.1. case in which $g > 0$	42
14. pairs with $\omega \leq 4$	43
14.1. case in which $\nu_1 \leq 3$	43
14.2. case in which $\lambda \geq 1$	43
14.3. case in which $\lambda \geq 1$ and $p \geq 1$	43
14.4. case in which $\lambda \geq 1$ and $p = 0, u \geq 1$	44
14.5. case in which $\lambda \ge 1$ and $k = 0$	45
14.6. case in which $\lambda \leq 0$ and $p \geq 1$	48
14.7. case in which $\lambda \leq 0$ and $p = 0, u \geq 1$	49
14.8. case in which $\lambda \leq 0$ and $k = 0$	51
15. sharp estimate	62
15.1. case in which $B \geq 3$	63
15.2. case in which $\lambda < 0$ and $p \ge 1$	64
15.3. case in which $\lambda < 0$ and $p = 0, u > 0$	66
15.4. case in which $\lambda < 0$ and $k = 0$	69
15.5. case in which $t_{\nu_1-1} = 0$	69
15.6. case in which $t_{\nu_1-1} > 0$ and $s \ge 2$	72
15.7. case in which $t_{\nu_1-1} > 0$ and $s = 1$	74
15.8. case in which $r = t + 2 > 9$	74
16. Appendix	76
16.1. pairs with $\omega = 1, 2$	76
16.2. pairs with $\omega = 3$	76
16.3. pairs with $\omega = 4$	77
16.4. pairs with $\omega = 5$ (1)	78
16.5. pairs with $\omega = 5$ (2)	79
16.6. pairs with $\omega = 5$ (3)	80

16.7. pairs with $\omega = 6$ (1)	81
16.8. pairs with $\omega = 6$ (2)	82
16.9. pairs with $\omega = 6$ (3)	83
17. pairs with small α	85
17.1. pairs with $\alpha = 1, 2, 3$	85
17.2. pairs with $\alpha = 4$	86
17.3. pairs with $\alpha = 5$	87
17.4. pairs with $\alpha = 5$, continued	88
17.5. pairs with $\alpha = 6, (1)$	89
17.6. pairs with $\alpha = 6$, (2)	90
18. bibliography	93
References	93

1. Introduction

Here, we shall study birational properties of algebraic plane curves from the viewpoint of Cremonian geometry. As a matter of fact, let S be a nonsingular rational surface and D a nonsingular curve on S. (S,D) are called pairs and we study such pairs. The purpose of Cremonian geometry is the study of birational properties of pairs (S,D).

Suppose that $m \geq a \geq 1$. Then $P_{m,a}[D] = \dim |mK_S + aD| + 1$ are called mixed plurigenera, which depend on S and D. It is my understanding that these invarints embody the essential geometric properties of the curve D on S.

Letting Z stand for $K_S + D$, we see $P_{m,m}[D] = \dim |mZ| + 1$, called logarithmic plurigenera of S - D, from which logarithmic Kodaira dimension is introduced, denoted by $\kappa[D]$.

Assume that $\kappa[D] = 2$ and that there exist no (-1) curves E such that $E \cdot D \leq 1$. Then such pairs are proved to be minimal models in the birational geometry of pairs ([7],[6]).

Moreover, if $S \neq \mathbf{P^2}$, then there exists a surjective morphism $pr: S \to \mathbf{P^1}$ whose general fibers are $\mathbf{P^1}$. The least mapping degree of $pr|_D: D \to \mathbf{P^1}$ for all such pr, is denoted by σ .

By definition, $P_{1,1}[D] = g$, which is the genus of D, and \overline{g} is defined to be g - 1.

If
$$\sigma > 4$$
 then $D + 2K_S$ is nef and big; furthermore, $P_{2,1}[D] = Z^2 - \overline{g} + 1 = A + 1$, where $A = Z^2 - \overline{g}$;

If $\sigma > 6$ then $|D + 3K_S| \neq \emptyset$ and

$$P_{3,1}[D] = 3Z^2 + 1 - 7\overline{g} + D^2 = 3A - \alpha + 1 = \Omega - \omega + 1$$

where $\alpha = 4\overline{g} - D^2$, $\Omega = (3Z - 2D) \cdot Z = 3Z^2 - 4\overline{g}$ and $\omega = 3\overline{g} - D^2$. The invariant ω is rewritten as $\frac{(D+3K_S)\cdot D}{2}$.

2. MAIN RESULT

 ω is a very powerful invariant, which determines the basic structure of pairs (S,D). We shall establish the upper bound estimate of σ by ω provided that $\kappa[D]=2$, (S,D) is minimal and $\sigma\geq 7$. Namely, we shall verify the next inequality (1).

Theorem 1. If $\sigma > 7$ then

$$\sigma \le (\omega + 1)(\omega + 2) = \omega^2 + 3\omega + 2 \tag{1}$$

except for the type [7*9,1;1].

In the exceptional case, $\sigma = 7$ and $\omega = 1$.

2.1. minimal models.

We start with recalling some basic results in birational geometry of pairs.

Proposition 1. Suppose that (S,D) is minimal. Let g denote the genus of the curve D.

- (1) If g > 0 then $Z = K_S + D$ is nef. Moreover, when $\kappa[D] = 2$, Z is big.
- (2) If g = 0 and $\kappa[D] = 2$ then $D^2 \leq -5$ and letting β denote $-D^2$, $Z_{\beta} = Z \frac{2}{\beta}D$ is nef and big.

Minimal pairs are obtained from some kind of singular models, namely, # minimal pairs which will be defined below. Any nontrivial \mathbf{P}^1 – bundle over \mathbf{P}^1 has a section Δ_{∞} with negative self intersection number, which is denoted by a symbol Σ_B , where $-B = \Delta_{\infty}^2$ if B > 0. Σ_B is said to be a Hirzebruch surface of degree B after Kodaira.

Let Σ_0 denote the product of two projective lines.

The Picard group of Σ_B is generated by a section Δ_{∞} and a fiber $F_c = \rho^{-1}(c)$ of the \mathbf{P}^1 bundle, where $c \in \mathbf{P}^1$ and $\rho : \Sigma_B \to \mathbf{P}^1$ is the projection.

Let C be an irreducible curve on Σ_B . Then $C \sim \sigma \Delta_{\infty} + eF_c$, for some σ and e. Here the symbol \sim means the linear equivalence between divisors. We have $C \cdot F_c = \sigma$ and $C \cdot \Delta_{\infty} = e - B \cdot \sigma$. Note that $\kappa[\Delta_{\infty}] = -\infty$.

Hereafter, suppose that $C \neq \Delta_{\infty}$. Thus $C \cdot \Delta_{\infty} = e - B \cdot \sigma \geq 0$ and hence, $e \geq B\sigma$. Denoting $2e - B\sigma$ by \widetilde{B} , we have the formula:

$$g_0 = \frac{(\sigma - 1)(\widetilde{B} - 2)}{2}.$$

Thus introducing τ_m by

$$\tau_m = (\sigma - m)(\widetilde{B} - 2m), \tag{2}$$

we obtain

$$(K_0 + C)^2 = \tau_2,$$

where K_0 denotes a canonical divisor on Σ_B .

Moreover, letting Z_0 be $K_0 + C$, we obtain

$$\nu Z_0 - (\nu - 1)C \sim C + \nu K_0$$
$$(\nu Z_0 - (\nu - 1)C) \cdot Z_0 = \tau_{\nu+1} - 2(\nu - 1)^2,$$

and

$$(\nu Z_0 - (\nu - 1)C) \cdot C = \tau_{\nu} - 2\nu^2$$
.

Furthermore, define ω_0 by

$$\omega_0 = \frac{(3Z_0 - 2C) \cdot C}{2}.$$

Then $\omega_0 = \frac{\tau_3}{2} - 9$.

Therefore,

$$\omega = \omega_0 - \sum_{j=1}^r \frac{\nu_j(\nu_j - 3)}{2}$$
$$= \frac{\tau_3}{2} - 9 - \sum_{j=1}^r \frac{\nu_j(\nu_j - 3)}{2}.$$

2.2. **types of pairs and** # **minimal pairs.** By $\nu_1, \nu_2, \dots, \nu_r$ we denote the multiplicities of all singular points (including infinitely near singular points) of C where $\nu_1 \geq \nu_2 \geq \dots \geq \nu_r$.

The symbol $[\sigma * e, B; \nu_1, \nu_2, \cdots, \nu_r]$ is said to be the **type** of (Σ_B, C) .

Definition 1. the pair (Σ_B, C) is said to be # minimal, if

- $\sigma \geq 2\nu_1$ and $e \sigma \geq B\nu_1$;
- moreover, if B=1 and r=0 then assume $e-\sigma>1$.

Using elementary transformations, we get

Theorem 2. If D is not transformed into a line on \mathbf{P}^2 by Cremona transformations, then $\kappa[D] \geq 0$. In this case, a minimal pair (S,D) is obtained from a # minimal pair (Σ_B,C) by shortest resolution of singularities of C using blowing ups except for $(S,D) = (\mathbf{P}^2,C_d)$, C_d being a nonsingular curve.

Theorem 3. If (S,D) is obtained from a # minimal pair(model) (Σ_B,C) by shortest resolution of singularities of C, then (S,D) is relatively minimal. In other words, for any (-1) curve Γ on S, $\Gamma \cdot \Delta \geq 2$.

2.3. ω for nonsingular plane curves.

First we treat pairs with small $\sigma(\text{cf Terashima}([10]))$. Suppose that D is a nonsingular plane curve on $\mathbf{P^2}$ of degree d. Then $\omega = \frac{d(d-9)}{2}$ and we obtain the next table.

Table 1. ω for nonsingular plane curves

2.4. ω for small σ .

2.4.1. $\sigma = 2$.

Suppose that $\sigma = 2$. Then $D^2 = 4g + 4 = 4\overline{g} + 8$ and hence, $\omega = 3\overline{g} - D^2 = -7 - g \le -8$ and $\alpha = -8$.

2.4.2. $\sigma = 3$.

Suppose that $\sigma = 3$. Then $D^2 = 3g + 6 = 3\overline{g} + 9$ and hence, $\omega = -9$ and $\alpha = \overline{g} - 9$.

2.4.3. $\sigma = 4$.

Suppose that $\sigma = 4$. Then $\widetilde{B} = 2e - 4B$. We distinguish the various cases according to the value of B.

- (1) B = 0. Then e = 4 + u and $\widetilde{B} = 2(4 + u) = 8 + 2u$; thus, $\tau_3 = 2(u + 1)$ and so $\omega = u + 1 9 + t_2 = u + t_2 8$. Since $g = 9 + 3u t_2 \ge 0$, we get $t_2 \le 9 + 3u$.
- (2) B = 1. Then $e = 4 + u + \nu_1$ and $\widetilde{B} = 4 + 2u + 2\nu_1$; thus, $\tau_3 = 2u + 2\nu_1 2$. Hence, $\omega = u + \nu_1 10 + t_2$. Since $g = 3(1 + u + \nu_1) t_2 \ge 0$, we get $t_2 \le 3 + 3\nu_1 + 3u$.

If r = 0 then $u \ge 1$ and $\omega = u - 9 \ge -8$.

If $\nu_1 = 2$ then $t_2 \ge 1$ and $\omega = u - 8 + t_2 \ge -7$.

Table 2. ω when $\sigma = 4, B = 0$

\overline{u}	0	1	2	3	4	5	6	7	8
t_2									
0	- 8	- 7	- 6	- 5	- 4	- 3	- 2	- 1	0
1	-7	-6	-5	-4	-3	-2	-1	0	1
2	- 6	-5	- 4	-3	-2	-1	0	1	2
3	-5	-4	-6 -5 -4 -3	-2	-1	0	1	2	3

Table 3. ω when $\sigma = 4, B = 1, r = 0$

Table 4. ω when $\sigma = 4, B = 1, \nu_1 = 2$

\overline{u}	0	1	2	3	4	5	6	7	8
t_2									
1	-7	-6	-5	-4	-3	-2	-1	0	1
2	-7 -6 -5	-5	-4	-3	-2	-1	0	1	2
3	- 5	- 4	- 3	-2	-1	0	1	2	3

(3) $B \ge 2$. Then e = 4B + u and $\widetilde{B} = 4B + 2u$; thus, $\tau_3 = 4B - 6 + 2u$ and so $\omega = 2(B-2) + u - 8 + t_2$.

If r = 0, then $\omega = 2(B-2) + u - 8$. Otherwise, $\omega = 2(B-2) + u - 8 + t_2$.

Table 5. ω when $\sigma = 4, B \ge 2, r = 0$

\overline{u}	0	1	2	3	4	5	6	7	8
B									
2	-8	-7	-6	-5	-4	-3	-2 -1 0	-1	0
3	-7	-6	-5	-4	-3	-2	-1	0	1
	_	_		_	~	- 4	_	-4	^

2.4.4. $\sigma = 5$.

Suppose that $\sigma = 5$. Then $\widetilde{B} = 2e - 5B$. We distinguish the various cases according to the value of B.

- (1) B = 0. Then e = 5 + u and $\widetilde{B} = 10 + 2u$; thus, $\tau_3/2 = 2u 1$ and so $\omega = 2u 5 + t_2$. Since $g = 4(4 + u) t_2 \ge 0$, we get $t_2 \le 16 + 4u$.
- (2) B = 1. Then $e = 5 + u + \nu_1$ and $\widetilde{B} = 5 + 2u + 2\nu_1$; thus, $\tau_3 = 2(2u + 2\nu_1 1)$. Hence, $\omega = 2u + 2\nu_1 10 + t_2$.

If r = 0 then $u \ge 1$ and $\omega = 2u - 8$.

If r > 0 then $\omega = 2u - 6 + t_2$.

Table 6. ω when $\sigma = 5, B = 0$

u	0	1	2	3	4	5
t_2						
0	- 5	-3 -2 -1	-1	1	3	5
1	-4	-2	0	2	4	6
2	- 3	-1	1	3	5	7
3	-2	0	$\overset{1}{2}$	4	6	8

Table 7. ω when $\sigma = 5, B = 1, r = 0$

Table 8. ω when $\sigma = 5, B = 1, r > 0$

Since $g = 3(1 + u + \nu_1) - t_2 \ge 0$, we get $t_2 \le 3 + 3\nu_1 + 3u$. If r = 0 then $u \ge 1$ and $\omega = u - 9$. If $\nu_1 = 2$ then $t_1 \ge 1$ and $\omega = u - 8 + t_2$.

2.4.5. $\sigma = 6$.

Suppose that $\sigma = 6$. Then $\widetilde{B} = 2e - 6B$. We distinguish the various cases according to the value of B.

(1) B = 0. Then e = 6 + u and $\widetilde{B} = 12 + 2u$; thus, $\tau_3/2 = 9 + 3u$ and so $\omega = 3u + t_2$. Since $g = 25 + 5u - t_2 - 3t_3 \ge 0$, we get $t_2 + 3t_3 \le 25 + 5u$.

Table 9. ω when $\sigma = 6, B = 0$

(2) B=1. Then $e=6+u+\nu_1$ and $\widetilde{B}=6+2u+2\nu_1$; thus, $\tau_3=6(u+\nu_1)$. Hence, $\omega=3u+3\nu_1-9+t_2$.

If
$$r = 0$$
 then $u \ge 1$ and $\omega = 3u - 6$.

If
$$r > 0$$
 and $t_3 = 0$ then $e = 8 + u$ and $\omega = 3u - 3 + t_2$.

If
$$r > 0$$
 and $t_3 > 0$ then $e = 9 + u$ and $\omega = 3u + t_2$.

Table 10.
$$\omega$$
 when $\sigma = 6, B = 1, r = 0$

Table 11. ω when $\sigma=6, B=1, r>0$

u	0	1	2	3	4
t_2					
1	-2	1	4	7	10
2	-1	2	5	8	11
3	0	3	6	9	12

Table 12. ω when $\sigma = 6, B = 1, t_3 > 0$

u	0	1	2	3	4
t_2					
0	3	6	9	12	15
1	4	7	10 11	13	16
2	5	8	11	14	17
3	6	9	12	15	18

2.4.6. $\sigma = 7$.

Suppose that $\sigma = 7$. Then $\widetilde{B} = 2e - 7B$. We distinguish the various cases according to the value of B.

(1) B=0. Then e=7+u and $\widetilde{B}=14+2u$; thus, $\tau_3/2=16+4u$ and so $\omega=7+4u+t_2\geq 7$.

Table 13. ω when $\sigma = 7, B = 0$

u	0	1	2	3	4	5
t_2						
0	7	11	15	16 17	21	
1	8	12	16	17	22	

(2) B=1. Then $e=7+u+\nu_1$ and $\widetilde{B}=7+2u+2\nu_1$; thus, $\tau_3=4(1+2u+2\nu_1)$. Hence, $\omega=2+4u+4\nu_1-9+t_2$.

If r = 0 then $u \ge 1$ and $\omega = 4u - 3$.

If r > 0 and $t_2 > 0$, $t_3 = 0$ then $\omega = 4u + 1 + t_2$.

If r > 0 and $t_2 \ge 0, t_3 > 0$ then e = 10 + u and $\omega = 4u + 5 + t_2$.

Table 14. ω when $\sigma=7, B=1, r=0$

Table 15. ω when $\sigma = 7, B = 1$

	0	1	2	3	4
t_2					
1	2	6	10	14	18
$\frac{1}{2}$	3	7	11	15	19
3	4	8	10 11 12	16	20

2.5. **graph.**

The following figure is obtained by plotting (ω, σ) .

Note that in Figure 1, there are many parabolas; these are defined by $y = x^2 + 3x + 2, y = x^2 + x + 2, y = x^2 - x + 4, y = x^2 - x + 2,$

Figure 1

We have the following inequality, which is closely related to the inequality

Theorem 4. Let \overline{g} denote g-1. If $\sigma \geq 7$, then

$$\sigma \le \omega_1^2 + \omega_1 + 2 + 2\overline{g}. \tag{3}$$

Here, $\omega_1 = \omega - \overline{g}$ and $\omega_1 = K_S \cdot D$.

- The domain (I) is defined by $y \le x^2+3x+2, y>x^2+x+2$. The domain (II) is defined by $y \le x^2+x+2, y>x^2-x+4$.

2.6. proof of the inequality (1) in the case when $\nu_1 \leq 3$.

First, we consider the case when $\nu_1 \leq 3$.

By the formula, we get $\omega = \tau_3/2 - 9 + t_2 \ge \tau_3/2 - 9$.

Assuming $\sigma \geq 7$, we distinguish the various cases according to the value of B.

(1) If B = 0, then $e \ge \sigma$ and

$$\tau_3 = (\sigma - 3)(2e - 6) \ge 2(\sigma - 3)^2 \ge 8(\sigma - 3).$$

Hence,

$$\omega \ge \tau_3/2 - 9 \ge 4(\sigma - 3) - 9 = 4\sigma - 21 \ge 7.$$

Thus,

$$\sigma \leq \frac{\omega + 21}{4}$$
.

In particular,

$$\sigma < (\omega + 1)(\omega + 2)$$
.

(2) If B=1, then $e-\sigma\geq 2$ and $\widetilde{B}-6=2e-\sigma-6\geq e-4\geq \sigma-2$. Hence,

$$\tau_3 = (\sigma - 3)(\widetilde{B} - 6) \ge 5(\sigma - 3).$$

Thus

$$\omega \ge \omega_0 = \frac{\tau_3}{2} - 9 \ge \frac{5\sigma - 33}{2}.$$

Therefore,

$$\sigma \leq \frac{2\omega + 33}{5}.$$

If $\omega = 1$ then $\sigma \le 7$. Assume further that $\sigma = 7$. Then e = 9 and the type is [7*9,1;1].

Moreover, $\omega^2 + 3\omega + 2 - (\frac{2\omega + 33}{5}) = \frac{5\omega^2 + 13\omega - 23}{5} > 0$ for $\omega > 1$. Hence,

$$\omega^2 + 3\omega + 2 \ge \left(\frac{2\omega + 33}{5}\right) > \sigma.$$

(3) If $B\geq 2$, then $e-2\sigma=e-B\sigma+(B-2)\sigma\geq (B-2)\sigma\geq 0$ and so $\widetilde{B}-6=2e-B\sigma-6\geq e-6\geq 2\sigma+(B-2)\sigma-6$. Hence,

$$\tau_3 = (\sigma - 3)(\widetilde{B} - 6) \ge 2(\sigma - 3)(\sigma - 3) + (B - 2)\sigma(\sigma - 3) \ge 8(\sigma - 3),$$

and moreover.

$$\omega \ge \tau_3/2 - 9 \ge 4(\sigma - 3) - 9 = 4\sigma - 21 \ge 7.$$

Thus,

$$\sigma \le \frac{\omega + 21}{4}.$$

In particular,

$$\sigma < (\omega + 1)(\omega + 2)$$
.

2.6.1. examples.

If the type is $[7*9,1;2^r]$ then g = 27 - r, $D^2 = 77 - 4r$, $\omega = 1 + r$.

If the type is $[8*12,1;4^r]$ then q = 49 - 6r, $D^2 = 128 - 16r$, $\omega = 16 - 2r$.

When r=8, we get $\kappa[D]=1$. This contradicts the hypothesis that $\kappa[D]=2.$

When r = 7, $\kappa[D] = 2$ and $\omega = 2$.

When r = 6, we have $\kappa[D] = 2$ and $\omega = 4$.

Moreover, if the type is $[8*12,1;4^7,3^{t_3}]$ where $t_3=1,2$, then $\omega=2$.

If the type is $[8*12,1;4^7,3^{t_3},2]$ where $t_3=1,2$, then $\omega=3$.

Finally, if the type is $[8*12,1;4^6,3^{t_3}]$ where $t_3 = 1,2,3,4$, then we have $\omega = 4$.

2.7. proof of the inequality (2) in the case when r=0.

Assume that r=0. Then $\omega=\frac{\tau_3}{2}-9$ and $\overline{g}=\frac{\tau_1}{2}-1$. Hence,

$$\omega_1 = \omega - \overline{g} = \frac{\tau_3 - \tau_1}{2} - 8.$$

But, $\tau_3 - \tau_1 = -2B' + 16$, where $B' = 2\sigma + \widetilde{B}$. It is easy to check

- if $B \neq 1$, then $B' \geq 4\sigma$;
- if B = 1, then $B' > 3\sigma$.

By using B', we have $\omega_1 = -B'$, $\omega_1(\omega_1+1) = B'(B'-1)$ and $2\overline{g} = \sigma \widetilde{B} - B'$.

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} = (B' - 1)^2 + 1 + \sigma \widetilde{B} \ge 5\sigma^2$$
.

2.8. **lemma.** We shall use the next lemma:

Lemma 1. Suppose that (S, D) is minimal.

- (1) If B = 0 or 2 then $2\sigma \overline{g} (\sigma 2)D^2 = (2D + \sigma K_S) \cdot D \ge 0$.
- (2) If B = 1 then either $(2D + \sigma K_S) \cdot D \ge 0$ or $(3D + eK_S) \cdot D \ge 2$.
- (3) If $B \geq 2$ then $(2D + \sigma K_S) \cdot D \geq (e + e \sigma B 2\sigma)\sigma \geq \sigma^2(B 2)$. (4) If $B \geq 3$ then $(2D + \sigma K_S) \cdot D \geq \sigma^2$; in particular, $2\sigma \overline{g} (\sigma 2)D^2 \geq \sigma^2$. Hence, $\sigma \omega_1 + 2D^2 \geq \sigma^2$.

Proof. From $\sigma K_0 + 2C \sim (2e - \sigma(B+2))F_c$, it follows that

$$(2D + \sigma K_S) \cdot D = (2C + \sigma K_0) \cdot C + \sum_{j=1}^{r} (\sigma - 2\nu_j)\nu_j$$
$$= (e + e - \sigma B - 2\sigma)\sigma + pY + 2\widetilde{\mathcal{Z}}$$
$$\geq \sigma^2 (B - 2).$$

where
$$X = \sum_{j=1}^{r} \nu_{j}^{2} Y = \sum_{j=1}^{r} \nu_{j}$$
 and $\mathcal{Z}^{*} = \nu_{1}Y - X$. Thus,
 $(\sigma K_{S} + 2D) \cdot D \geq (\sigma K_{0} + 2C) \cdot C \geq \sigma^{2}(B - 2)$.

From this one can verify (1), (3) and (4).

As for (1), when B=1, if $(2C+\sigma K_0)\cdot C=(2e-3\sigma)\sigma<0$ then

$$(3D + eK_S) \cdot D = (3C + eK_0) \cdot C + \sum_{j=1}^{r} (e - 3\nu_j)\nu_j$$

$$= (3C + eK_0) \cdot C + (p + u)Y + 3\widetilde{Z}$$

$$= (3\sigma - 2e)\Delta_{\infty} \cdot (\sigma\Delta_{\infty} + eF_c) + (p + u)Y + 3\widetilde{Z}$$

$$= (3\sigma - 2e)(e - \sigma) + (p + u)Y + 3\widetilde{Z}$$

$$= (3\sigma - 2e)(u + \nu_1) + (p + u)Y + 3\widetilde{Z}$$

$$> u + \nu_1 > 2.$$

Here note that $e - 3\nu_j = \sigma + u + \nu_1 - 3\nu_j = \sigma - 2\nu_j + u + \nu_1 - \nu_j \ge 0$. Q.E.D.

2.9. proof of the inequality (1) in the case when $B \geq 3$. Suppose that $B \geq 3$.

Then by Lemma 1(3),

$$\sigma\omega_1 \ge -2D^2 + \sigma^2,$$

in other words,

$$\omega_1 \geq \sigma - \frac{2}{\sigma}D^2$$
.

If $D^2 \leq 0$, then

$$\omega_1 \ge \sigma - \frac{2}{\sigma}D^2 \ge \sigma$$
.

Hence,

$$\omega = \omega_1 + \overline{g} \ge \sigma - 1$$
.

Therefore,

$$\sigma < \omega + 1$$
.

If $D^2 > 0$, then since $\omega = 3\overline{g} - D^2 \ge 0$, it follows that $3\overline{g} \ge D^2$ and so

$$\omega = \omega_1 + \overline{g} \ge \sigma + \frac{\sigma - 6}{\sigma} D^2 \ge \sigma.$$

Thus $\sigma \leq \omega$.

Q.E.D.

In particular,

$$\sigma < (\omega + 1)(\omega + 2)$$
.

2.10. proof of the inequality (2) in the case when $B \ge 3$. By Lemma 1 (3), $2\sigma \overline{g} - (\sigma - 2)D^2 \ge \sigma^2$. From this, it follows that

$$2\overline{g} - (\frac{\sigma - 2}{\sigma})D^2 \ge \sigma.$$

Replacing D^2 by $\omega_1 + 2\overline{q}$, we obtain

$$\frac{4\overline{g}}{\sigma} + \frac{\sigma - 2}{\sigma}\omega_1 \ge \sigma.$$

We distinguish the various cases according to the signature of ω_1 .

(1) Suppose that $\omega_1 \geq 0$.

If $\overline{g} = -1$ then $\omega_1 > \sigma$, and hence,

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} = \omega_1(\omega_1 + 1) > \sigma^2 + \sigma > 49 + \sigma.$$

If $\overline{g} \ge 0$ then $\frac{4\overline{g}}{7} + \omega_1 > \sigma$. From this, we get

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} - (\frac{4\overline{g}}{7} + \omega_1) = \omega_1^2 + 2 + \frac{10\overline{g}}{7} \ge 2 > 0.$$

Thus the inequality (2) is obtained.

(2) Suppose that $\omega_1 \leq 0$. Then

$$\frac{4\overline{g}}{7} \ge \sigma,$$

thus

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} - \frac{4\overline{g}}{7} = \omega_1^2 + \omega_1 + 1 + \frac{10\overline{g}}{7} + 1 > 0.$$

Hence,

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} \ge \frac{4\overline{g}}{7}$$

$$> \sigma.$$

In that follows, we suppose that $B \leq 2$.

3. FUNDAMENTAL EQUALITIES

By

$$2\omega = (D + 3K_S) \cdot D, 2\omega_0 = (C + 3K_0) \cdot C,$$

and

$$2\overline{g} = (D + K_S) \cdot D, 2\overline{g}_0 = (C + K_0) \cdot C,$$

we get

•
$$\omega = \omega_0 - \sum_{j=1}^r \frac{\nu_j(\nu_j - 3)}{2}$$
,
• $g = g_0 - \sum_{j=1}^r \frac{\nu_j(\nu_j - 1)}{2}$.

•
$$g = g_0 - \sum_{j=1}^r \frac{\nu_j(\nu_j - 1)}{2}$$
.

By putting $X = \sum_{j=1}^{r} \nu_j^2$ and $Y = \sum_{j=1}^{r} \nu_j$, we obtain

•
$$2\omega - 2\omega_0 = -X + 3Y$$
,
• $2g - g_0 = -X + Y$.

$$\bullet 2q - q_0 = -X + Y$$

Thus

•
$$X = 3q_0 - \omega_0 - 3q + \omega$$
,

$$\bullet \ Y = g_0 - \omega_0 - g + \omega.$$

However, from $\omega_0 = \frac{\tau_3}{2} - 9$ and $\overline{g_0} = \frac{\tau_1}{2} - 1$, it follows that

•
$$\overline{g_0} - \omega_0 = \widetilde{B} + 2\sigma$$
,
• $3\overline{g_0} - \omega_0 = \widetilde{B}\sigma$.

•
$$3\overline{g_0} - \omega_0 = \widetilde{B}\sigma$$
.

Consequently we obtain the next equalities:

•
$$X = \widetilde{B}\sigma + \omega - 3\overline{g}$$
,

•
$$Y = \widetilde{B} + 2\sigma + \omega - \overline{q}$$
.

3.1. two invariants.

We shall compute two invariants $\widetilde{B} + 2\sigma$ and $\widetilde{B}\sigma$ by examining the following cases according to the value of B.

(1)
$$B = 0$$
. Then $\sigma = 2\nu_1 + p, e = \sigma + u$ for some $u \ge 0$ and

$$\bullet \ \widetilde{B} + 2\sigma = 8\nu_1 + 4p + 2u,$$

•
$$\widetilde{B} + 2\sigma = 8\nu_1 + 4p + 2u$$
,
• $\widetilde{B}\sigma = 8\nu_1^2 + 2\nu_1(4p + 2u) + 2pu + 2p^2$.

(2) case
$$B=1$$
. Then $\sigma=2\nu_1+p, e=\sigma+\nu_1+u$ for some $u\geq 0$ and

$$\bullet \ \widetilde{B} + 2\sigma = 8\nu_1 + 3p + 2u,$$

$$\begin{split} \bullet & \ \widetilde{B} + 2\sigma = 8\nu_1 + 3p + 2u, \\ \bullet & \ \widetilde{B}\sigma = 8\nu_1^2 + 2\nu_1(3p + 2u) + 2pu + p^2. \end{split}$$

(3)
$$B = 2$$
. Then $\sigma = 2\nu_1 + p$, $e = 2\sigma + u$ for some $u \ge 0$ and

$$\bullet \ \widetilde{B} + 2\sigma = 8\nu_1 + 4p + 2u,$$

•
$$\widetilde{B} + 2\sigma = 8\nu_1 + 4p + 2u$$
,
• $\widetilde{B}\sigma = 8\nu_1^2 + 2\nu_1(4p + 2u) + 2pu + 2p^2$.

Defining $w = 4 - \delta_{1B}$, we get w = 4 if $B \neq 1$. Further, w = 3 if B = 1. Introducing an invariant k by k = wp + 2u, we have

$$\bullet \ \widetilde{B} + 2\sigma = 8\nu_1 + k,$$

•
$$\widetilde{B} + 2\sigma = 8\nu_1 + k$$
,
• $\widetilde{B}\sigma = 8\nu_1^2 + 2k\nu_1 + p(k-2p)$.

Proposition 2. Letting k denote wp + 2u, w being $4 - \delta_{1B}$, we have the following fundamental equalities:

•
$$X = 8\nu_1^2 + 2k\nu_1 + \tilde{k} + \omega_1 - 2\overline{g}$$
,
• $Y = 8\nu_1 + k + \omega_1$.

•
$$Y = 8\nu_1 + k + \omega_1$$
.

3.2. invariant $\widetilde{\mathcal{Z}}$. Following Matsuda([9]), we shall compute $\nu_1 Y - X$, which we denote by $\widetilde{\mathcal{Z}}$.

By
$$\widetilde{\mathcal{Z}} = \nu_1 Y - X = \sum_{j=1}^r \nu_j (\nu_1 - \nu_j) \ge 0$$
, we have

$$0 \le \widetilde{\mathcal{Z}} = \nu_1(\omega - \overline{g} - k) - \widetilde{k} - \omega_1 + 2\overline{g}. \tag{4}$$

Here $\tilde{k} = kp - 2p^2$.

Defining the invariant λ to be $k - \omega_1$, we obtain

$$0 \le \nu_1 Y - X = -\nu_1 \lambda - \tilde{k} - \omega_1 + 2\overline{g}.$$

Hence,

$$\nu_1 \lambda < -\tilde{k} - \omega_1 + 2\overline{q}. \tag{5}$$

3.3. case in which $B \geq 3$.

In the case when B > 2, by B_2 we denote B - 2. Then $e = B\sigma + u =$ $B_2\sigma + 2\sigma + u$ for some $u \ge 0$ and $\widetilde{B} = 2e - B\sigma = B_2\sigma + 2(\sigma + u)$.

Moreover, $\widetilde{B}\sigma = B_2\sigma^2 + 2(\sigma + u)\sigma$ and so

- $\widetilde{B} + 2\sigma = B_2\sigma + 8\nu_1 + k$, $\widetilde{B}\sigma = B_2\sigma^2 + 8\nu_1^2 + 2k\nu_1 + \widetilde{k}$.

Thus, we obtain the following fundamental equalities:

- $X = B_2 \sigma^2 + 8\nu_1^2 + 2k\nu_1 + \tilde{k} + \omega_1 2\overline{g}$
- $Y = B_2 \sigma + 8\nu_1 + k + \omega_1$.

where $\omega_1 = \omega - \overline{q}$. Further, we get

$$0 \le \widetilde{\mathcal{Z}} = B_2 \sigma(\nu_1 - \sigma) - k\nu_1 + (\nu_1 - 1)\omega_1 + 2\overline{g} - \widetilde{k},$$

and

$$B_2\sigma(\sigma-\nu_1) \le -k\nu_1 + (\nu_1-1)\omega_1 + 2\overline{g} - \tilde{k}.$$

If $B \geq 3$, we have

$$\sigma(\sigma - \nu_1) \le B_2 \sigma(\sigma - \nu_1) \le -k\nu_1 + (\nu_1 - 1)\omega_1 + 2\overline{g} - \tilde{k}. \tag{6}$$

Hence, the following is derived:

Proposition 3. If B > 3, then

$$2\nu_1^2 \le \sigma(\sigma - \nu_1) \le (\nu_1 - 1)\omega_1 + 2\overline{g}.$$

3.3.1. examples.

Example 1. Suppose that the pair has the type $[8*24,3;4^r]$. Then $\widetilde{B}=24$ and g = 77 - 6r.

Suppose that $77 - 6r \ge 0$. Then $D^2 = 16(12 - r)$. When r = 12, we have $\overline{q} = 4, \omega_1 = 8 \text{ and } \omega = 12.$

3.4. an estimate of ω .

Theorem 5. If $B \geq 3$ and $\nu_1 \geq 4$, then $\omega \geq 12$.

Proof. Supposing $\omega \leq 11$, we shall derive a contradiction.

From $\overline{g} = \omega - \omega_1$, we get by Proposition 3

$$2\nu_1^2 \le (\nu_1 - 1)\omega_1 + 2(\omega - \omega_1);$$

thus

$$2\nu_1^2 - (\nu_1 - 3)\omega_1 \le 2\omega \le 22.$$

By $\nu_1 \geq 4$, we derive $\omega_1 \geq 10$. Actually, since $\omega_1 > 0$, it follows that

$$10 \le \frac{2\nu_1^2 - 22}{\nu_1 - 3} \le \omega_1.$$

Since $\omega \leq 11$ and $\omega_1 \geq 10$, it follows that

$$11 \ge \omega \ge 10 + \overline{g}. \tag{7}$$

Hence, $\overline{g} = 1$ or 0 or -1.

By Lemma 1(4), we have $\sigma\omega_1 + 2D^2 \ge \sigma^2$. Thus

$$\omega_1 \ge \sigma - \frac{2D^2}{\sigma},\tag{8}$$

which will be used.

We shall distinguish the following cases according to the value of \overline{q} .

(1) $\bar{g} = 1$.

Then $\omega = 11$ and $\omega_1 = 10$. But from $\omega_1 = 2\overline{g} - D^2$, we get $D^2 = -8$. From the inequality (8)

$$10 = \omega_1 \ge \sigma - \frac{2D^2}{\sigma} = \sigma + \frac{16}{\sigma},$$

it follows that $\sigma = 8$.

By making use of the inequality (6), we obtain k = 0. The fundamental formulas turn out to be

- $Y = \sigma + 8\nu_1 + k + \omega_1$, $X = \sigma^2 + 8\nu_1^2 + 2k\nu_1 + \omega_1 2\overline{g}$.

From these,

$$\widetilde{Z} = \sigma(\nu_1 - \sigma) + (\nu_1 - 1)\omega_1 + 2\overline{g} = -32 + 30 + 2 = 0.$$

Thus $r = t_4$ and $Y = \sigma + 8\nu_1 + k + \omega_1 = 50 = 4r$, which has no solution.

(2)
$$\overline{g} = 0$$
.

Then $\omega = \omega_1 = 10$ or 11.

Assume $\omega = 10$. But from $\omega_1 = 2\overline{g} - D^2$, we get $D^2 = -10$.

From the inequality (6)

$$10 = \omega_1 \ge \sigma - \frac{2D^2}{\sigma} = \sigma + \frac{20}{\sigma},$$

it follows that $\sigma < 8$, a contradiction.

Assume $\omega = 11$. But from $\omega_1 = 2\overline{g} - D^2$, we get $D^2 = -11$. From the inequality (6)

$$11 = \omega_1 \ge \sigma - \frac{2D^2}{\sigma} = \sigma + \frac{22}{\sigma},$$

it follows that $\sigma = 8$ and $\nu_1 = 4$.

Further, by the inequality (6), we get k = 0 and so $\widetilde{\mathcal{Z}} = \sigma(\nu_1 - \sigma) + (\nu_1 - 1)\omega_1 + 2\overline{g} = -32 + 3 \cdot 11 = 1$.

But $\widetilde{\mathcal{Z}} \geq \nu_1 - 1 = 3$, which implies a contradiction.

(3) $\bar{q} = -1$.

Then $\omega_1 = \omega + 1 \ge 10$. Hence, $\omega \ge 9$.

Therefore, $\omega = 9, 10, 11$. Corresponding to these values, we have $D^2 = -12, -13, -14$ since $\omega = -3 - D^2$.

But from $\omega_1 \geq \sigma - \frac{2D^2}{\sigma}$, we get $\omega_1 = 10 \geq \sigma + \frac{24}{\sigma}$ or $\omega_1 = 11 \geq \sigma + \frac{26}{\sigma}$ or $\omega_1 = 12 \geq \sigma + \frac{28}{\sigma}$.

Therefore, we obtain $\sigma = 8$ and $\omega_1 = 12$

Further, by the inequality (6), we get k = 0 and so $\widetilde{\mathcal{Z}} = \sigma(\nu_1 - \sigma) + (\nu_1 - 1)\omega_1 + 2\overline{q} = -32 + 3 \cdot 12 - 2 = 2 > \nu_1 = 3$, a contradiction.

3.5. case in which $\omega=12$. Supposing that $B\geq 3$, $\nu_1\geq 4$ and $\omega=12$, we shall compute the types.

By $\omega_1 = \omega - \overline{g} = 12 - \overline{g} \le 13$,

$$2\nu_1^2 - (\nu_1 - 3)\omega_1 \le 2\omega = 24.$$

By $\nu_1 \geq 4$, we derive $\nu_1 = 4$ and $8 \leq \omega_1 = 12 - \overline{g}$. Hence, $\overline{g} < 4$.

(1) $\overline{g} = 4$. Then $\omega_1 = 8$ and $\omega_1 = 8 - D^2$. Hence, $D^2 = 0$ and

$$8 = \omega_1 \ge \sigma - \frac{2D^2}{\sigma} = \sigma \ge 8.$$

Therefore, $\sigma = 8$ and k = 0. Furthermore,

$$\widetilde{\mathcal{Z}} = \sigma(\nu_1 - \sigma) + (\nu_1 - 1)\omega_1 + 2\overline{g} = 0.$$

Then $Y = 8 + 8 \cdot 4 + 8 = 48 = 5r$. Hence, r = 12 and the type turns out to be $[8 * 24, 3; 4^{12}]$.

(2) $\overline{g} = 3$. Then $\omega_1 = 9$ and $9 = \omega_1 = 6 - D^2$. Hence, $D^2 = -3$. It is easy to derive k = 0 and

$$\widetilde{\mathcal{Z}} = \sigma(\nu_1 - \sigma) + (\nu_1 - 1)\omega_1 + 2\overline{g} = 1 \ge \nu_1 - 1 = 3,$$

a contradiction.

(3) $\overline{g} = 2$. Then $\omega_1 = 10$ and $10 = \omega_1 = 4 - D^2$. Hence, $D^2 = -6$. It is easy to derive k = 0 and

$$\widetilde{\mathcal{Z}} = \sigma(\nu_1 - \sigma) + (\nu_1 - 1)\omega_1 + 2\overline{g} = 2 \ge \nu_1 - 1 = 3,$$

a contradiction.

(4) $\overline{g} = 1$. Then $\omega_1 = 11$ and $11 = \omega_1 = 2 - D^2$. Hence, $D^2 = -9$. It is easy to derive k = 0 and

$$\widetilde{\mathcal{Z}} = \sigma(\nu_1 - \sigma) + (\nu_1 - 1)\omega_1 + 2\overline{g} = 3.$$

Then $\nu_1 = 4$ and $t_3 = 1$. By $Y = 8 + 8 \cdot 4 + 11 = 51 = 4t_4 + 3t_3 + 2t_2 = 4t_4 + 3$. Hence, $t_4 = 12, r = 13$ and the type turns out to be $[8 * 24, 3; 4^{12}, 3]$.

(5) $\overline{g} = 0$. Then $\omega_1 = 12$ and $12 = \omega_1 = -D^2$. Hence, $D^2 = -12$. It is easy to derive k = 0 and

$$\widetilde{\mathcal{Z}} = \sigma(\nu_1 - \sigma) + (\nu_1 - 1)\omega_1 + 2\overline{g} = 4 = 3t_3 + 4t_2.$$

Then 2 = 1. By $Y = 8 + 8 \cdot 4 + 12 = 51 = 4t_4 + 1$, which has no solution.

(6) $\overline{g}=-1$. Then $\omega_1=13$ and $13=\omega_1=-2-D^2$. Hence, $D^2=-15$. It is easy to derive k=0 and

$$\widetilde{\mathcal{Z}} = \sigma(\nu_1 - \sigma) + (\nu_1 - 1)\omega_1 + 2\overline{g} = 5 = 3t_3 + 4t_2.$$

This has no solution.

Therefore, we obtain the next result.

Proposition 4. If $B \ge 3$, $\nu_1 \ge 4$ and $\omega = 12$, then the type becomes $[8*24,3;4^{12}]$ or $[8*24,3;4^{12},3]$.

4. ESTIMATE OF k IN TERMS OF ω

We shall prove the following estimate of k.

Proposition 5. If $B \leq 2$, $\sigma \geq 7$ and $\nu_1 \geq 3$, then $k \leq \omega$.

Proof.

From proposition 4, it follows that

$$0 \leq \widetilde{\mathcal{Z}} = \nu_1(\omega - \overline{g} - k) - \widetilde{k} - \omega_1 + 2\overline{g}$$

$$= -k\nu_1 + (\nu_1 - 1)\omega_1 + 2\overline{g} - \widetilde{k}$$

$$= -k\nu_1 + (\nu_1 - 1)(\omega - \overline{g}) + 2\overline{g} - \widetilde{k}$$

$$= -k\nu_1 + (\nu_1 - 1)\omega + \overline{g}(3 - \nu_1) - \widetilde{k}$$

$$\leq -k\nu_1 + (\nu_1 - 1)\omega + \overline{g}(3 - \nu_1).$$

Thus when $\overline{g} \geq 0$, we get

$$k\nu_1 \leq (\nu_1 - 1)\omega$$
.

Hence,

$$k \le \frac{(\nu_1 - 1)\omega}{\nu_1} < \omega.$$

However, when $\overline{g} = -1$, we get

$$k\nu_1 < (\nu_1 - 1)\omega + \nu_1 - 3.$$

Hence,

$$k - \omega \le 1 - \frac{3 + \omega}{<} 1.$$

Therefore, $k \leq \omega$. Thus, introduce an invariant i by $i = \omega - k \geq 0$.

4.1. case when $k = \omega$. Assume i = 0. Then $k = \omega$ and by the previous argument, $\overline{g} = -1$.

Supposing that $\widetilde{Z} > 0$, we get $\widetilde{Z} \ge \nu_1 - 1$. Hence,

$$\nu_1 - 1 \le \widetilde{\mathcal{Z}} = -k\nu_1 + (\nu_1 - 1)k + \overline{g}(3 - \nu_1) - \tilde{k}$$

$$= -k + \overline{g}(3 - \nu_1) - \tilde{k}.$$

Thus $\overline{g} = -1$ and so

$$\nu_1 - 1 \le -k + \nu_1 - 3 - \tilde{k}$$
.

This is a contradiction. Therefore, $\widetilde{Z} = 0$.

- 4.2. a formula for *i*. In general, in the case when $i \ge 0, \overline{g} = -1$ and $\widetilde{Z} = 0$, we obtain the following formulae from the fundamental equalities (3):
 - $\omega_1 = i + 1 + k$,
 - $(r-8)\nu_1 = k + \omega_1 = 2k + i + 1$,
 - $(r-8)\nu_1^2 = 2k\nu_1 + \omega_1 + \tilde{k} + 2 = 2k\nu_1 + \tilde{k} + i + k + 3.$

Then $r \geq 9$ and

$$\nu_1 = \frac{2k+i+1}{r-8}. (9)$$

From

$$(r-8)\nu_1^2 = (2k+i+1)\nu_1 = 2k\nu_1 + \tilde{k} + i + k + 3,$$

it follows that

$$(i+1)\nu_1 = \tilde{k} + i + k + 3,$$

and

$$(i+1)\frac{2k+i+1}{r-8} = \tilde{k}+i+k+3.$$

Hence,

$$(i+1)(2k+i+1) = (r-8)(\tilde{k}+i+k+3).$$
(10)

Furthermore, we obtain

$$k(2i+10-r)+(i+1)^2=(r-8)(\tilde{k}+i+3).$$
 (11)

4.3. case in which i = 0. Suppose that i = 0. From the formula (11), it follows that

$$k(10-r)+1=\tilde{k}+3.$$

Hence, r = 9 and $k + 1 = \tilde{k} + 3$; $k = \tilde{k} + 2$.

Therefore, from $k = \tilde{k} + 2 = p(k - 2p) + 2$, it follows that either 1)p = 1 or 2) k = 2p + 2, $p \neq 1$.

In the case when p=1, we have $\nu_1=2k+1$ and k=w+2u, where $w=4-\delta_{1B}$.

If B = 1 then k = 3 + 2u and $\sigma = 2\nu_1 + p = 4k + 3$; $e = \sigma + \nu_1 + u = 6k + u + 4$.

Thus $B = 2e - \sigma = 9k + 2$. The type becomes $[(4k + 3) * (6k + u + 4), 1; (2k + 1)^9]$, where k = 3 + 2u.

Conversely, if the minimal pair (S, D) has this type, then $g = \frac{(\sigma-1)(\widetilde{B}-2)}{2} - 9(2k+1)k = 0$ and $D^2 = \sigma \widetilde{B} - 9(2k+1)^2 = -k-3$. Thus $\omega = -3 - (-k-3) = k$.

If B = 0 then k = 4 + 2u and $\nu_1 = 2k + 1 = 9 + 4u$, $\sigma = 2\nu_1 + p = 4k + 3 = 19 + 8u$; $e = \sigma + \nu_1 + u = 19 + 9u$. The type becomes $[(19 + 8u) * (19 + 9u), 1; (9 + 4u)^9]$.

Conversely, if the minimal pair (S,D) has this type, then g=0 and $\omega=4+2u=k$.

In the case when $k = 2p + 2, p \neq 1$, we have either p = 0 or p > 0.

If p = 0 then u = 1 and k = 2. Thus $\nu_1 = 2k + 1 = 5, \sigma = 10, B = 0, 2$.

If B = 0 then the type becomes $[10 * 11; 5^9]$.

If p > 1 then k = 2p + 2 = wp + 2u, from which it follows that p = 2, u = 0, w = 3, k = 6 and B = 1. Moreover, $\nu_1 = 2k + 1 = 13$ and $\sigma = 28$ and e = 41. The type becomes $[28 * 41; 13^9]$.

Conversely, if the minimal pair (S,D) has this type then g=0 and $D^2=-9$ and $\omega=6=k$.

4.4. case when $k = \omega - 1$.

5. Case in which
$$\lambda \geq 1$$

First we shall prove the inequality (2), from which the inequality (1) will be derived later.

6. PROOF OF THE INEQUALITY (2) IN THE CASE WHEN k > 0

Suppose that $\widetilde{\mathcal{Z}} = \nu_1 Y - X > 0$. Then

$$\widetilde{\mathcal{Z}} \ge \nu_r(\nu_1 - \nu_r) \ge \nu_1 - 1.$$

Recalling that

$$\widetilde{\mathcal{Z}} = \nu_1 Y - X = -\nu_1 \lambda - \widetilde{k} - \omega_1 + 2\overline{g}$$

we obtain

$$\nu_1 - 1 \le -\nu_1 \lambda - \tilde{k} - \omega_1 + 2\overline{q}$$

where $\lambda = k - \omega_1$.

Thus,

$$\nu_1 + \lambda \nu_1 - 1 < -\tilde{k} - \omega_1 + 2\overline{g}.$$

Since $1 - \lambda \le 0$ and $p - \tilde{k} \le 0$, it follows that

 $\sigma = 2\nu_1 + p < (1 - \lambda)\nu_1 + 1 + p - \tilde{k} - \omega_1 + 2\overline{g}$

 $1-\omega_1+2\overline{a}$.

 $\omega_1^2 + \omega_1 + 2 + 2\overline{g} - \sigma > (\omega_1 + 1)^2$. (12)

Hence,

Therefore,

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} \ge \sigma.$$

7. CASE IN WHICH $\widetilde{\mathcal{Z}} = 0$

Suppose that $\nu_1 Y - X = \widetilde{\mathcal{Z}} = 0$. Then $\nu_1 = \cdots = \nu_r$ and hence, X = 0 $r\nu_1^2, Y = r\nu_1$. Thus

- $(r-8)\nu_1^2 = 2k\nu_1 + \tilde{k} + \omega_1 2\overline{g}$, $(r-8)\nu_1 = k + \omega_1$.

Recall that $\lambda = k - \omega_1 \ge 1$.

7.1. case in which k > 0.

(1) Suppose that $r \geq 9$. Then $\nu_1 \leq (r-8)\nu_1 = k + \omega_1$. Thus,

$$\nu_1 \leq k + \omega_1$$
.

Hence,

$$\sigma = 2\nu_1 + p \le 2k + 2\omega_1 + p.$$

Since

$$2\lambda \le \nu_1 \lambda \le -\tilde{k} - \omega_1 + 2\overline{g},\tag{13}$$

it follows that

$$\omega_{1}^{2} + \omega_{1} + 2 + 2\overline{g} - \sigma$$

$$\geq \omega_{1}^{2} + \omega_{1} + 2 + 2\overline{g} - (2k + 2\omega_{1} + p)$$

$$\geq \omega_{1}^{2} + \omega_{1} + 2 + (2\lambda + \tilde{k} + \omega_{1}) - (2k + 2\omega_{1} + p)$$

$$\geq \omega_{1}^{2} + \omega_{1} + 2 + (2k - \omega_{1} + \tilde{k}) - (2k + 2\omega_{1} + p)$$

$$= \omega_{1}^{2} - 2\omega_{1} + 1 + 1 + \tilde{k} - p$$

$$> 1.$$

Therefore, if $\nu_1 \geq 2$, then

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} - \sigma > 0.$$

(2) Suppose that r = 8. Then

•
$$0 = (r - 8)\nu_1^2 = 2k\nu_1 + \tilde{k} + \omega_1 - 2\overline{g},$$

• $0 = (r - 8)\nu_1 = k + \omega_1.$

•
$$0 = (r - 8)\nu_1 = k + \omega_1$$
.

Hence, $\omega_1 = -k \le -2$. Furthermore, $\lambda = k - \omega_1 = 2k$ and

$$2\nu_1 = \frac{-\tilde{k} - \omega_1 + 2\overline{g}}{k};$$

thus,

$$\sigma = 2\nu_1 + p = \frac{-\tilde{k} - \omega_1 + 2\overline{g}}{k} + p.$$

Moreover, from $0 = 2k\nu_1 + \tilde{k} + \omega_1 - 2\overline{g}$, it follows that

$$2\overline{g} = 2k\nu_1 + \tilde{k} + \omega_1$$

$$= 2k\nu_1 + \tilde{k} - k$$

$$= k(2\nu_1 - 1) + \tilde{k}$$

$$> 3k.$$

Since

$$\frac{k}{2} - \frac{2p^2}{k} = \frac{1}{2k}(k^2 - 4p^2) \ge \frac{5p^2}{2k} > 0$$

we obtain

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} - \sigma = \omega_1^2 + \omega_1 + 2 + 2\overline{g} - (\frac{-\tilde{k} - \omega_1 + 2\overline{g}}{k} + p)$$

$$= k(k-1) + 1 + 2\overline{g}(1 - \frac{1}{k}) - \frac{2p^2}{k}$$

$$> k(k-1) + 1 + 3k(1 - \frac{1}{k}) - \frac{2p^2}{k}$$

$$\geq k^2 + \frac{k}{2} - \frac{2p^2}{k}$$

$$> 0.$$

Thus

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} - \sigma > 0.$$

(3) Suppose that $r \leq 7$. Then letting s be 8 - r > 0, we get

•
$$s\nu_1^2 = -2k\nu_1 - \tilde{k} - \omega_1 + 2\overline{g}$$
,
• $s\nu_1 = -k - \omega_1$.

•
$$s\nu_1 = -k - \omega_1$$
.

Since $\nu_1 \leq s\nu_1 = -k - \omega_1$, it follows that

$$\sigma \leq -2k - 2\omega_1 + p.$$

Moreover,

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} - \sigma \ge \omega_1^2 + 3\omega_1 + 2 + 2\overline{g} + 2k - p$$

$$\ge \omega_1(3 + \omega_1) + 2 + 2\overline{g} + (2w - 1)p + 4u.$$

The function defined by

$$F(x) = x(3+x) + 2 + 2\overline{q} + (2w-1)p + 4u \tag{14}$$

has minimal values at x = -1 or -2. By

$$F(-1) = F(-2) = -2 + 2 + 2\overline{g} + (2w - 1)p + 4u \ge (2w - 1)p + 4u - 2$$

$$F(x) > 0 \text{ if } k > 0.$$

7.2. case in which k=0.

Then

•
$$(r-8)\nu_1^2 = \omega_1 - 2\overline{g}$$
,
• $(r-8)\nu_1 = \omega_1$.

•
$$(r-8)\nu_1 = \omega_1$$
.

Recall that $\lambda = -\omega_1 \ge 1$. Then $\overline{g} - \omega = -\omega_1 \ge 1$ and so $\overline{g} > 0, r < 8$. Letting s = 8 - r, we get

$$\bullet \ s\nu_1^2 = -\omega_1 + 2\overline{g},$$

$$\bullet$$
 $s\nu_1 = -\omega_1$.

Then $\sigma = 2\nu_1 = \frac{-2\omega_1}{s}$ and so

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} - \sigma = \omega_1^2 + \omega_1 + 2 + 2\overline{g} + \frac{2\omega_1}{s}$$
$$= (\omega_1 + \frac{s+2}{2s})^2 + 2 + 2\overline{g} - (\frac{s+2}{2s})^2$$

which is positive.

If s = 1 then

$$2 + 2\overline{g} - (\frac{s+2}{2s})^2 = 2\overline{g} - \frac{1}{4} \ge 1.$$

If $s \ge 2$ then $\frac{s+2}{2s} < 1$. Hence,

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} > \sigma.$$

8. Case in which
$$\lambda \leq 0$$

Suppose that $\lambda = k - \omega + \overline{g} \le 0$. In other words, $\omega - \overline{g} \ge k = wp + 2u$. First we note the following lemma, which is a bit sharper result than the lemma proved by Matsuda.

8.1. Lemma due to Tanaka and Matsuda.

Lemma 2 (Tanaka and Matsuda). Let m, μ_1, \dots, μ_r be integers such that $m \ge \mu_1 \ge \dots \ge \mu_r \ge 2$ and that $\sum_{j=1}^r \mu_j = sm + \beta$ for some integers $s \ge 0$ and $\beta > 0$.

Putting $X = \sum_{j=1}^{r} \mu_j^2$, $Y = \sum_{j=1}^{r} \mu_j$, we obtain $Y = sm + \beta$ and $V = sm^2 + \beta^2 - X$ which satisfy that

- V > 0.
- If V = 0 then either 1) $m = \mu_1 = \dots = \mu_{r-1} > \mu_r$ and $s = r-1, \beta = \mu_r$ or 2) $m = \mu_1 = \dots = \mu_r$ and $s = r-1, \beta = m$.
- If V > 0 then $V \ge 2$.
- If V = 2 then $m = \mu_1 = \cdots = \mu_{r-2} > \mu_{r-1} = \mu_r = m-1, s = r-1, \beta = m-2$.
- If V > 2 then V > 4.
- If V = 4 then $m = \mu_1 = \dots = \mu_{r-2} > \mu_{r-1} = m-1, \mu_r = m-2, s = r-1, \beta = m-4.$

Proof.

(1) Assume that $\beta \geq m$. Dividing β by m, we have q, r_0 such that $\beta = qm + r_0$, $0 \leq r_0 < m$ and $q \geq 1$. Then $Y = sm + \beta = (s+q)m + r_0$ and let s' = s + q. Thus

$$V' = s'm^2 + r_0^2 - X, V = sm^2 + \beta^2 - X.$$

Hence,

$$V-V'=sm^2+\beta^2-(s'm^2+r_0^2)=-qm^2+(qm+r_0)^2-r_0^2=qm((q-1)m+2r_0)\geq 0.$$
 If $V=V'$ then $q=1,r_0=0.$ In this case, $\beta=m$ and $Y=sm+m=(s+1)m.$

Otherwise, $V \ge V' + 2m \ge V' + 4$. If V = V' + 4 then m = 2. Thus we assume $\beta < m$.

- (2) If $\mu_1 = m$, then replace m by m-1 and r by r-1, respectively. After such replacement, V is invariant. Hence, we may assume that $\mu_1 < m$ and we shall prove the lemma by induction on r.
 - (3) If r=1 then s=0 and $\mu_1=\beta$; thus V=0.
- (4) When r > 1, (i) we suppose that $\mu_1 + \mu_2 < m$. Then letting $\mu'_1 =$ $\mu_1 + \mu_2$, we define X' and Y' as follows:
 - $X' = \mu_1'^2 + \sum_{j=3}^r \mu_j^2$, $Y' = \mu_1' + \sum_{j=3}^r \mu_j$.

Since $Y = Y' = sm + \beta$, from induciton hypothesis, it follows that

$$V' = sm^2 + \beta^2 - X' > 0.$$

But $V = sm^2 + \beta^2 - X$ satisfies that

$$V - V' = X' - X = (\mu_1 + \mu_2)^2 - (\mu_1^2 + \mu_2^2) = 2\mu_1\mu_2 \ge 8.$$

- (ii) Assume $\mu_1 + \mu_2 > m + 1$. Then $2m 2 \ge \mu_1 + \mu_2$ and putting $\mu'_1 = m, m 2 \ge \mu'_2 = \mu_1 + \mu_2 m \ge 2$, we define X' and Y' as follows:
 - $X' = {\mu'_2}^2 + \sum_{j=3}^r {\mu_j}^2$, $Y' = {\mu'_2} + \sum_{j=3}^r {\mu_j}$.

Then $Y' = (s-1)m + \beta$ and $X = \mu_1^2 + \mu_2^2 - \mu_2'^2 + X'$. By induction hypothesis, $V' = (s-1)m^2 + \beta^2 - X' \ge 0$ and

$$V = sm^2 + \beta^2 - X$$
, $V' = (s-1)m^2 + \beta^2 - X'$.

Thus

$$V - V' = m^2 + X' - X = (\mu_1 + \mu_2 - m)^2 + m^2 - (\mu_1^2 + \mu_2^2).$$

Note the following lemma.

Lemma 3. Let a, b, m be nonnegative integers satisfying that

$$2 \le a \le m-1, 2 \le b \le m-1, and m+2 \le a+b$$
.

Then

$$m^2 + (a+b-m)^2 \ge a^2 + b^2 + 2$$
.

If the equality holds, then a = m - 1, b = m - 1.

Proof. Define a function $F(x) = m^2 + (x + b - m)^2 - (x^2 + b^2 + 2) =$ $m^2+2(b-m)x+(b-m)^2-b^2-2$, which is a liner function. Since $b-m \le -1$ and $x \le m-1$, it suffices to show that $F(m-1) \ge 0$. However, F(m-1) = $2(m-b-1) \ge 0$. Furthermore, if F(x) = 0 then x = m-1 and b = m-1. Q.E.D.

Applying the lemma, we see that $V - V' \ge 2$. And if V - V' = 2 then $\mu_1 = \mu_2 = m - 1$.

- (iii) Assume $\mu_1 + \mu_2 = m$. Then Y" and X" defined below
 - $X'' = \sum_{j=3}^{r} \mu_j^2 = s'm + \beta',$ $Y'' = \sum_{j=3}^{r} \mu_j,$

satisfy that Y = m + Y'' and $X = \mu_1^2 + \mu_2^2 + X''$. Moreover, $Y = s'm + \beta' + m + \beta' + m$

Then we have $s = s' + 1, \beta' = \beta$. Futher, since $m^2 - (\mu_1^2 + \mu_2^2) = 2\mu_1\mu_2 > 0$, it follows that

$$V = sm^{2} - X$$

$$= s'm^{2} + m^{2} - (\mu_{1}^{2} + \mu_{2}^{2} + X'')$$

$$= V'' + m^{2} - (\mu_{1}^{2} + \mu_{2}^{2})$$

$$= V'' + 2\mu_{1}\mu_{2}$$

$$> V'' + 8.$$

(iv) Assume $\mu_1 + \mu_2 = m + 1$. Then $Y = m + 1 + Y'' = s'm + \beta' + m + 1 = m + 1 + M'' = m + 1 + M$ $sm + \beta$.

If $\beta' < m-1$ then $s = s'+1, \beta = \beta'+1$. Thus $Y = m(s'+1) + \beta'+1$ and

$$V = m^{2}(s'+1) + (\beta'+1)^{2} - X$$

$$= s'm^{2} + m^{2} + \beta'^{2} - (X'' + \mu_{1}^{2} + \mu_{2}^{2}) + 2\beta' + 1$$

$$= V'' + m^{2} + 2\beta' + 1 - \mu_{1}^{2} - \mu_{2}^{2}$$

$$\geq V'' + (\mu_{1} + \mu_{2} - 1)^{2} + 1 - \mu_{1}^{2} - \mu_{2}^{2}$$

$$= V'' + 2\mu_{1}\mu_{2} - 2\mu_{1} - 2\mu_{2} + 2$$

$$= V'' + 2(\mu_{1} - 1)(\mu_{2} - 1)$$

$$> V'' + 2.$$

If V = V' + 2 then $\mu_1 = \mu_2$ and $\beta' = 0$.

Moreover, if $\beta' = m - 1$ then Y = m(s' + 2). Thus

$$V = m^{2}(s'+2) - X = m^{2}(s'+2) - (X'' + \mu_{1}^{2} + \mu_{2}^{2})$$

$$\geq V'' + 2m^{2} - \mu_{1}^{2} - \mu_{2}^{2}$$

$$= V'' + m^{2} - \mu_{1}^{2} + m^{2} - \mu_{2}^{2}$$

$$\geq V'' + 8 \geq 0.$$

Here,
$$m^2 - \mu_1^2 \ge (\mu_1 + 1)^2 - \mu_1^2 = 2\mu_1 + 1$$
. Q.E.D.

9. PROOF OF THE INEQUALITY (2) WHEN $\lambda \leq 0$

9.1. case in which k > 0.

By applying Lemma of Tanaka and Matsuda to the following

•
$$X = 8\nu_1^2 + 2k\nu_1 + \tilde{k} + \omega_1 - 2\overline{g},$$

• $Y = 8\nu_1 + k + \omega_1,$

•
$$Y = 8\nu_1 + k + \omega_1$$
.

we see that $V = 8\nu_1^2 + (k + \omega_1)^2 - X \ge 0$. Hence,

$$V = (k + \omega_1)^2 - (2k\nu_1 + \tilde{k} + \omega_1 - 2\overline{q}) > 0.$$

Thus

$$2k\nu_1 < (k + \omega_1)^2 - (\tilde{k} + \omega_1 - 2\overline{q}).$$

Assume k > 0. Then

$$\sigma = 2\nu_1 + p \le \frac{(k+\omega_1)^2 - (\tilde{k} + \omega_1 - 2\overline{g}) + kp}{k}.$$

Furthermore, we get

$$\begin{split} \sigma &= 2\nu_1 + p \\ &\leq \frac{(k+\omega_1)^2 - (\tilde{k} + \omega_1 - 2\overline{g}) + kp}{k} \\ &= \frac{(k+\omega_1)^2 + 2p^2 - \omega_1 + 2\overline{g}}{k} \\ &= k + 2\omega_1 + \frac{{\omega_1}^2 - \omega_1 + 2p^2 + 2\overline{g}}{k}. \end{split}$$

9.1.1. *example*.

Example 2. If the type of (S,D) is $[2\nu_1 * 2\nu_1; \nu_1^r]$ then

$$g = (2\nu_1 - 1)^2 - r \times \frac{\nu_1(\nu_1 - 1)}{2}, \quad D^2 = (8 - r)\nu_1^2.$$

Hence, $\omega = \frac{(8-r)\nu_1(\nu_1-3)}{2}$.

Table 16. ω

r	7	6	5
$\overline{\nu_1}$			
$\overline{4}$	2	4	6
5	5	10	15
6	9	18	27

9.2. case in which $p \ge 1$.

Suppose that $p \geq 1$. Then $k \geq 3p \geq 3$, so we have $\frac{2p^2}{k} \leq \frac{2}{9}k$. Recalling that $\omega_1 \geq k$, we get

$$\sigma \le (1 + \frac{2}{9})k + 2\omega_1 + \frac{{\omega_1}^2 - \omega_1 + 2\overline{g}}{k}$$

$$\le (3 + \frac{2}{9})\omega_1 + \frac{{\omega_1}^2 - \omega_1 + 2\overline{g}}{k}$$

$$\le (\frac{10}{3})\omega_1 + \frac{{\omega_1}^2 - \omega_1 + 2\overline{g}}{3}$$

$$= \frac{{\omega_1}^2 + 9\omega_1 + 2\overline{g}}{3}.$$

Therefore, we obtain

Proposition 6. *If* $p \ge 1$ *then*

$$\sigma \le (1 + \frac{2}{9})k + 2\omega_1 + \frac{\omega_1^2 - \omega_1 + 2\overline{g}}{k}.$$

In particular,

$$\sigma \le \frac{{\omega_1}^2 + 9\omega_1 + 2\overline{g}}{3}.\tag{15}$$

However, we shall show that

$$\frac{{\omega_1}^2 + 9\omega_1 + 2\overline{g}}{3} \le {\omega_1}^2 + \omega_1 + 2 + 2\overline{g}.$$

This is equivalent to the following

$$\omega_1^2 + 9\omega_1 + 2\overline{g} \le 3(\omega_1^2 + \omega_1 + 2 + 2\overline{g}).$$

Defining a function F(x) to be $x^2 - 3x + 3 + 2\overline{g}$, we see that the difference of the both sides of the above inequality is written as $2F(\omega_1)$.

By $\omega_1 \geq k \geq 3$, to verify the above inequality it suffices to show that $F(3) \geq 0$. But

$$F(3) = 3 + 2\overline{g} \ge 1$$
.

Thus we have established that

$$\omega^{2} + (1 - 2\overline{g})\omega + \overline{g}^{2} + \overline{g} + 1 = \omega_{1}^{2} + \omega_{1} + 2 + 2\overline{g}$$

$$\geq \frac{\omega_{1}^{2} + 9\omega_{1} + 2\overline{g}}{3} + \frac{2F(3)}{3}$$

$$\geq \sigma + \frac{6 + 4\overline{g}}{3}.$$

Hence,

$$\omega^2 + (1 - 2\overline{g})\omega + \overline{g}^2 + \overline{g} + 1 \ge \sigma + 2 + \frac{4\overline{g}}{3} > \sigma.$$

9.3. case in which $p=0, u \geq 1$.

Suppose that p=0. Then $k=2u\geq 2$, so we have by $\omega_1\geq k=2u$,

$$\sigma = 2\nu_1 \le \frac{(2u + \omega_1)^2 - \omega_1 + 2\overline{g}}{2u}$$

$$\le 2u + 2\omega_1 + \frac{{\omega_1}^2 - \omega_1 + 2\overline{g}}{2u}$$

$$\le 3\omega_1 + \frac{{\omega_1}^2 - \omega_1 + 2\overline{g}}{2}.$$

Next, we shall show that

$$3\omega_1 + \frac{\omega_1^2 - \omega_1 + 2\overline{g}}{2} < \omega_1^2 + \omega_1 + 2 + 2\overline{g}.$$

This is equivalent to the following

$$\omega_1^2 - \omega_1 + 2\overline{a} < 2\omega_1^2 - 4\omega_1 + 4 + 4\overline{a}$$

But

$$2\omega_1^2 - 4\omega_1 + 4 + 4\overline{g} - (\omega_1^2 - \omega_1 + 2\overline{g})$$

= $\omega_1^2 - 3\omega_1 + 4 + 2\overline{g}$.

Since $\omega_1 \geq 2u \geq 2$, it follows that

$$\omega_1^2 - 3\omega_1 + 4 + 2\overline{g} \ge 2 + 2\overline{g} \ge 0.$$

If the equality holds, then $\overline{g} = -1, \omega_1 = 2$. Note the following lemma:

Lemma 4. If p = 0 and $\omega_1 = k$ then $2\overline{g} \ge \omega_1$.

Proof. By the fundamental equalities:

•
$$X = 8\nu_1^2 + 2k\nu_1 + \omega_1 - 2\overline{g}$$

•
$$Y = 8\nu_1 + 2k$$

we get
$$0 \le \nu_1 Y - X = 2\overline{g} - \omega_1$$
.

Q.E.D.

Then $\omega_1 = 2$ implies k = 2 and so $2\overline{g} \ge \omega_1 = 2$. Therefore,

$$\omega_1^2 - 3\omega_1 + 4 + 2\overline{g} = 2 + 2\overline{g} \ge 4.$$

Thus, we have established if $\omega_1 = 2$, then

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} \ge \sigma + 2.$$

If $\omega_1 = 3$ then

$${\omega_1}^2 - 3\omega_1 + 4 + 2\overline{g} = 4 + 2\overline{g} \ge 2.$$

If the equality holds, then g = 0 and k = 2, u = 1. By

•
$$X = 8\nu_1^2 + 2k\nu_1 + \omega_1 - 2\overline{g} = 8\nu_1^2 + 4\nu_1 + 5$$
,
• $Y = 8\nu_1 + k + \omega_1 = 8\nu_1 + 5$

•
$$Y = 8\nu_1 + k + \omega_1 = 8\nu_1 + 5$$

we get $0 \le \nu_1 Y - X = \nu_1 - 5$; thus, $\nu_1 \ge 5$. From

$$10 \le \sigma = 2\nu_1 \le 3\omega_1 + \frac{{\omega_1}^2 - \omega_1 + 2\overline{g}}{2} = 11$$

it follows that $\nu_1 \leq 5$; hence $\nu_1 = 5$. This implies that $\nu_1 Y - X = \nu_1 - 5 = 0$. Hence, $\nu_1 = 5$. Thus the type of the pair is associated with $[10 * 11; 5^r]$. By g = 90 - 10r = 10(9 - r) = 0, we have r = 9, $\omega = 2$, $\sigma = 10$, and $\omega_1^2 + \omega_1 + 2 + 2\overline{g} = 12$ Except for this type, we obtain

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} \ge \sigma + 4$$
.

10. PROOF OF THE INEQUALITY (2) IN THE CASE WHEN $\lambda \leq 0$ AND k=0

Suppose that k=0, namely, p=u=0. As before, $\lambda=-\omega+\overline{g}\leq 0$. The fundamental equalities imply

- $X = 8\nu_1^2 + \omega_1 2\overline{g}$, $Y = 8\nu_1 + \omega_1$.

Following Matsuda([9]), let t denote t_{ν_1} . Then let X' be $\sum_{\nu_j < \nu_1} \nu_j^2$ and $Y' = \sum_{\nu_j < \nu_1} \nu_1$. Hence, $X = X' + t\nu_1^2$ and $Y = Y' + t\nu_1$. Therefore,

- $X' = (8 t)\nu_1^2 + \omega_1 2\overline{g},$ $Y' = (8 t)\nu_1 + \omega_1.$

10.1. case in which t > 8.

If $t \ge 8$ then let s denote 8 - t, namely $s = 8 - t \le 0$. Thus

- $X' s\nu_1^2 = \omega_1 2\overline{g}$, $Y' s\nu_1 = \omega_1$.

Therefore,

$$X' - s\nu_1^2 - (Y' - s\nu_1) = -2\overline{g} \le 2;$$

hence,

$$X' - Y' - s(\nu_1^2 - \nu_1) \le 2.$$

By $\nu_1 \ge 4$, we get $\nu_1^2 - \nu_1 \ge 12$. Hence, s = 0, i.e., t = 8 and if r > 8 then $2 \ge X' - Y' \ge \nu_r(\nu_r - 1) \ge 2$. Thus $X' = 4, Y' = 2, \nu_r = 2, r = 9$ which implies that the type is associated with $[2\nu_1 * 2\nu_1; \nu_1^8, 2]$. Otherwise, r = 8.

Consequently, we have the following contradictory result:

If g=1 then r=8 and the type is associated with $[2\nu_1*2\nu_1;\nu_1^8]$. But then $\kappa[D] < 2$, which contradicts the hypothesis.

If g=0 then r=9 and the type is associated with $[2\nu_1*2\nu_1;\nu_1^8,2]$. But again $\kappa[D] < 2$, which contradicts the hypothesis.

10.2. case in which t < 8.

Thus t < 8. Hence, s = 8 - t > 0 and

- $X' = s\nu_1^2 + \omega_1 2\overline{g}$, $Y' = s\nu_1 + \omega_1$.

Defining $\varepsilon(t)$ to be $\sum_{j=2}^{\nu_1-1} t_j$, we get

$$s(\nu_1 - 1) < s\nu_1 + \omega_1 = Y' = \sum_{j=2}^{\nu_1 - 1} jt_j \le (\nu_1 - 1)\varepsilon(t),$$

and so

$$s < \varepsilon(t)$$
.

By the way, from

$$(\nu_1 - 1)\omega_1 + 2\overline{g} = \widetilde{\mathcal{Z}} \ge (\nu_1 - 1)\varepsilon(t).$$

it follows that

$$\varepsilon(t) \leq \omega_1 + \frac{2\overline{g}}{\nu_1 - 1}.$$

Thus,

Proposition 7.

$$s \le \omega_1 + \frac{2\overline{g}}{\nu_1 - 1} - 1. \tag{16}$$

10.3. quadratic estimate. Following Matsuda([9]), applying the lemma for $m = \nu_1 - 1$, since $Y' = s(\nu_1 - 1) + s + \omega_1$, we have

$$V = s(\nu_1 - 1)^2 + (s + \omega_1)^2 - X' > 0.$$

Hence,

$$s\nu_1^2 + \omega_1 - 2\overline{g} \ge s(\nu_1 - 1)^2 + (s + \omega_1)^2$$
.

Then, we get

$$s\nu_1^2 + \omega_1 - 2\overline{q} \le s(\nu_1 - 1)^2 + (s + \omega_1)^2$$

and then

$$\sigma = 2\nu_1 \le \frac{s + (s + \omega_1)^2 - (\omega_1 - 2\overline{g})}{s}.$$

Thus.

$$\sigma \le s + 2\omega_1 + 1 + \frac{{\omega_1}^2 - \omega_1 + 2\overline{g}}{s}.$$

By Lemma of Matsuda and Tanaka, if V = 0 in other words, the equality holds, then we have two cases:

(1) $s + \omega_1 = \nu_1 - 1$ and so $Y' = (s+1)(\nu_1 - 1), r - t = s + 1$. Hence, r = 9and the type is associated with $[2\nu_1 * 2\nu_1; \nu_1^t, (\nu_1 - 1)^{9-t}]$.

(2) $t_{\nu_1-1} = r - t - 1 = s - 1 = 8 - t - 1$. Then r = 9 and the type is associated with $[2\nu_1 * 2\nu_1; \nu_1^t, (\nu_1 - 1)^{8-t}, \nu_r]$. By computation, $g = \nu_1 - \nu_r(\nu_r - 1)/2$.

10.4. **case** (1). In case (1), we have $s + \omega_1 = \nu_1 - 1$ and from

$$(s+1)(\nu_1-1)^2 = X' = s\nu_1^2 + \omega_1 - 2\overline{g}$$

it follows that

$$2\overline{g} = (1 - \nu_1)(\nu_1 - 2(9 - t)) = (\nu_1 - 1)(2s + 2 - \nu_1). \tag{17}$$

This implies that

$$2\omega = 2\nu_1 - 2 + 2\overline{g} - 2s$$

$$= 2\nu_1 - 2 + \nu_1(2s + 3 - \nu_1) - 2s - 2 - 2s$$

$$= \nu_1(2s + 5 - \nu_1) - 4s - 4$$

$$= \nu_1(21 - 2t - \nu_1) - 36 + 4t.$$

Thus we obtain

$$\omega = \frac{\nu_1(21 - \nu_1)}{2} - 18 - t(\nu_1 - 2). \tag{18}$$

We distinguish the various cases according to the value of \overline{g} .

- (i) $\overline{g} = -1$,
- (ii) $\overline{g} = 0$,
- (iii) $\overline{g} > 0$.
- 10.5. case (i).
 - (i) $\bar{g} = -1$.

Then

$$2 = -2\overline{g} = (\nu_1 - 1)(\nu_1 - 2(9 - t)).$$

Thus, $\nu_1 = 2$ or 3; in other words, $\sigma = 4$ or 6.

This contradicts the hypothesis saying $\sigma \geq 7$.

10.6. case (ii).

(ii) $\overline{g} = 0$. Then $2s + 2 = \nu_1$ and from $s + \omega = s + \omega_1 = \nu_1 - 1 = 2s + 1$, it follows that

$$\omega = s + 1 = 9 - t, \sigma = 2\nu_1 = 4s + 4.$$

The type becomes $[(4s+4)*(4s+4);(2s+2)^{8-s},(2s+1)^{s+1}]$.

Then

$$0 = -2\overline{g} = (\nu_1 - 1)(\nu_1 - 2(9 - t)).$$

Hence, $\nu_1 = 2s + 2 = 2(9 - t)$; thus $\sigma = 2\nu_1 = 4s + 4$.

But, since $\overline{g} = 0$, it follows that $\omega = \omega_1 = \nu_1 - 1 - s = s + 1$.

Table 17.
$$\overline{g} = 0$$

t	s	ω	ν_1	σ	type
7	1	2	4	8	$[8*8;4^7,3^2]$
6	2	3	6	12	$[12*12;6^6,5^3]$
5	3	4	8	16	$[16*16;8^5,7^4]$
4	4	5	10	20	$[18*18;9^4,8^5]$
3	5	6	12	24	$[20*20;10^3,9^6]$
2	6	7	14	28	$[22 * 22; 11^2, 10^7]$
1	7	8	16	32	$[24*24;12^1,11^8]$

10.7. case (iii).

(iii)
$$\overline{g} > 0$$
.

(iii) $\overline{g} > 0$. By $2\overline{g} = (\nu_1 - 1)(2s + 2 - \nu_1) > 0$, we get the bound of ν_1 ; indeed,

$$4 \le \nu_1 \le 2s + 1. \tag{19}$$

Hence, $s \ge 2$.

Table 18.
$$s=2$$

ν_1	$\nu_1 - 1$	$6 - \nu_1$	\overline{g}	ω	$_{ m type}$
4	3	2	3	4	
5	4	1	2	4	$[10*10;5^6,4^3]$

Table 19. s = 3

ν_1	$\nu_1 - 1$	$8 - \nu_1$	\overline{g}	ω	type
4	3	4	6	6	$[8*8;4^5,3^4]$
5	4	3	6	7	$[10*10;5^5,4^4]$
6	5	2	5	7	$[12*12;6^5,5^4]$
7	6	1	3	6	$[14*14;7^5,6^4]$

Table 20. s=4

ν_1	$\nu_1 - 1$	$10 - \nu_1$	\overline{g}	ω	type
4	3	6	9	8	$[8*8;4^4,3^5]$
5	4	5	10	10	$[10*10;5^4,4^5]$
6	5	4	10	11	$[12*12;6^4,5^5]$
7	6	3	9	11	$[14*14;7^4,6^5]$
8	7	2	7	10	$[16*16;8^4,7^5]$
9	8	1	4	8	$[18*18;9^4,8^5]$

Table 21. s=5

ν_1	$\nu_1 - 1$	$12 - \nu_1$	\overline{g}	ω	type
4	3	8	12	10	$[8*8;4^3,3^6]$
5	4	7	14	13	$[10*10;5^3,4^6]$
6	5	6	15	15	$[12*12;6^3,5^6]$
7	6	5	15	16	$[14*14;7^3,6^6]$
8	7	4	14	16	$[16*16;8^3,8^6]$
9	8	3	12	15	$[18*18;9^3,8^6]$
10	9	2	9	13	$[20*20;10^3,9^6]$
11	10	1	5	10	$[22 * 22; 11^3, 10^6]$

Table 22. s=6

ν_1	$\nu_1 - 1$	$14 - \nu_1$	\overline{g}	ω	type
$\overline{4}$	3	10	15	12	$[8*8;4^2,3^7]$
5	4	9	18	16	$[10*10;5^2,4^7]$
6	5	8	20	19	$[12*12;6^2,5^7]$
7	6	7	21	21	$[14*14;7^2,6^7]$
8	7	6	21	22	$[16*16;8^2,7^7]$
9	8	5	20	22	$[18*18;9^2,8^7]$
10	9	4	18	21	$[20*20;10^2,9^7]$
11	10	3	15	19	$[22*22;11^2,9^7]$
12	11	2	11	16	$[24 * 24; 12^2, 11^7]$
13	12	1	6	12	$[26*26;13^2,12^7]$

Table 23. s=7

ν_1	$\nu_1 - 1$	$16 - \nu_1$	\overline{g}	ω	type
$\overline{4}$	3	12	18	14	$[8*8;4,3^8]$
5	4	11	22	19	$[10*10;5,4^8]$
6	5	10	25	23	$[12*12;6,5^8]$
7	6	9	27	26	$[14*14;7,6^8]$
8	7	8	28	28	$[16*16;8,7^8]$
9	8	7	28	29	$[18*18;9,8^8]$
10	9	6	27	29	$[20*20;10,9^8]$
11	10	5	25	28	$[22 * 22; 11, 10^8]$
12	11	4	22	26	$[24 * 24; 12, 11^8]$
13	12	3	18	23	$[26*26;13,12^8]$
14	13	2	13	19	$[28 * 28; 14, 13^8]$
15	14	1	7	14	$[30*30;15,14^8]$

10.8. **case (2).** Second, we study case (2):

(2) $t_{\nu_1-1} = r - t - 1 = s - 1 = 8 - t - 1$. Then r = 9 and the type is associated with $[2\nu_1 * 2\nu_1; \nu_1^t, (\nu_1 - 1)^{8-t}, \nu_r]$. By computation, $g = \nu_1 - \nu_r(\nu_r - 1)/2$.

10.9. case in which s=1.

Assume s = 1. Then t = 7 and $g = \nu_1 - \nu_r(\nu_r - 1)/2$; thus,

$$\sigma = 2\nu_1 \le 1 + (1 + \omega_1)^2 - (\omega_1 - 2\overline{g}).$$

If $\overline{g} = -1$ then we obtain

$$\sigma = 2\nu_1 \le (\omega + 2)(\omega + 1)$$
.

Here, the equality holds if and only if $\sigma = (\omega + 1)(\omega + 2)$.

Moreover, $\nu_1 = \frac{\nu_r(\nu_r - 1)}{2}$; hence, the type is associated with $[2\nu_1 * 2\nu_1; \nu_1^7, \nu_1 - 1, \nu_r]$. Then $\omega = \nu_r - 2$.

- (1) If $\nu_r = 4$, then $\nu_1 = 6$, the type is associated with $[12 * 12; 6^7, 5, 4]$.
- (2) If $\nu_r = 5$, then $\nu_1 = 10$, the type is associated with $[20 * 20; 10^7, 9, 5]$,
- (3) If $\nu_r = 6$, then $\nu_1 = 15$, the type is associated with $[30*30; 15^7, 14, 6]$.

If
$$\overline{g} = 0$$
, then $g = 1$ and $\nu_1 = \frac{\nu_r(\nu_r - 1)}{2} + 1$

$$\sigma = 2\nu_1 < \omega^2 + \omega + 2$$
.

If $\overline{g} = 1$ then we obtain

$$\sigma = 2\nu_1 \le \omega^2 + \omega - 2.$$

If $\overline{q} = 2$ then we obtain

$$\sigma = 2\nu_1 \le \omega^2 - \omega + 4$$
.

10.10. case in which s=2. If s=2 and $\overline{g}=-1$ then t=6 and we obtain

$$\sigma = 2\nu_1 \le \frac{(\omega+2)(\omega+3)+2}{2} = \frac{\omega^2+5\omega+8}{2}.$$

10.11. case in which $s \ge 2$. Here we shall prove the inequality (2). First note the following

$$\sigma = 2\nu_1$$

$$\leq \frac{s + (s + \omega_1)^2 - (\omega_1 - 2\overline{g})}{s}$$

$$= 1 + s + 2\omega_1 + \frac{\omega_1^2 - \omega_1 + 2\overline{g}}{s}.$$

That is

$$\sigma \le 1 + s + 2\omega_1 + \frac{\omega_1^2 - \omega_1 + 2\overline{g}}{s}.\tag{20}$$

Subtracting
$$1 + s + 2\omega_1 + \frac{\omega_1^2 - \omega_1 + 2\overline{g}}{s}$$
 from $\omega_1^2 + \omega_1 + 2 + 2\overline{g}$

we have

$$(s-1)(\omega_1^2-\omega_1+2\overline{g}-s)$$
.

Therefore, if

$$\omega_1^2 - \omega_1 + 2\overline{g} \ge s$$

then

$$\omega_1^2 + \omega_1 + 2 + 2\overline{g} \ge 1 + s + 2\omega_1 + \frac{\omega_1^2 - \omega_1 + 2\overline{g}}{2} \ge \sigma.$$

Thus, we obtain the inequality (2).

Therefore, assuming that

$$\omega_1^2 - \omega_1 + 2\overline{g} < s, (21)$$

we shall derive a contradiction, referring to the inequality in Proposition 7. As a matter of fact,

$$\omega_1^2 - \omega_1 + 2\overline{g} < \omega_1 + \frac{2\overline{g}}{\nu_1 - 1} - 1.$$

Hence,

$$\omega_1^2 - 2\omega_1 + 2\overline{g}(1 + \frac{1}{\nu_1 - 1}) + 1 < 0.$$

Thus, $\overline{g} = -1$. Then $\omega_1 = \omega + 1 \ge 3$.

$$0 > \omega_1^2 - 2\omega_1 + 2\overline{g}(1 + \frac{1}{\nu_1 - 1}) + 1 = (\omega_1 + 1)^2 - 2(1 + \frac{1}{\nu_1 - 1}) > 0.$$

This is a contradiction. Thus, the proof of the inequality (2) is complete.

11. PROOF OF THE INEQUALITY (1)

We shall derive the inequality (1) from the inequality (2).

If g = 0 then the inequality (2) turns out to be the inequality (1). Hence, we assume q > 1. From

$$\omega^2 + 3\omega + 2 - (\omega_1^2 + \omega_1 + 2 + 2\overline{g}) = (\omega - \omega_1)(\omega + \omega_1 + 1) - 2\overline{g} + 2\omega$$
$$= g(\omega + \omega_1)$$
$$= g(2\omega - \overline{g}),$$

it follows that when $2\omega - \overline{g} \ge 0$, the inequality (1) is derived. Hence, we assume

$$2\omega - \overline{g} < 0. \tag{22}$$

However,

$$4\omega - 2\overline{g} = 4(3\overline{g} - D^2) - 2\overline{g} = 2(5\overline{g} - 2D^2).$$

By Hartshorne's lemma, we have either (1) $|2D + \sigma K_S| \neq \emptyset$ or (2) B = 1 and $|3D + eK_S| \neq \emptyset$.

11.1. case (1).

In case (1), we have $(2D + \sigma K_S) \cdot D = 2\sigma \overline{g} - (\sigma - 2)D^2 > 0$ and then

$$5\overline{g} - 2D^2 \ge \frac{\sigma - 10}{2\sigma}D^2.$$

- (i) If $D^2 \le 0$ then $5\overline{g} 2D^2 \ge 5\overline{g} \ge 0$.
- (ii) If $D^2 > 0$ and $\sigma 10 > 0$ then

$$5\overline{g} - 2D^2 \ge \frac{\sigma - 10}{2\sigma}D^2 \ge 0.$$

Thus we may assume $\sigma < 10$. Thus in order to prove

$$\sigma < \omega^2 + 3\omega + 2$$

it suffices to assume that $\omega=1$. Recalling that $7\leq\sigma<10,$ we have $\omega_1=1-\overline{g}$ and

$$\widetilde{\mathcal{Z}} = -k\nu_1 + (\nu_1 - 1)\omega_1 + 2\overline{g}$$

$$= -k\nu_1 + (\nu_1 - 1)(1 - \overline{g}) + 2\overline{g}$$

$$= \nu_1(1 - k - \overline{g}) + 3\overline{g} - 1.$$

If $\nu_1 = 3$ then $p = \sigma - 6 > 0, k > 0$ and $\widetilde{\mathcal{Z}} = 3 - 3k - 1 < 0$, a contradiction. If $\nu_1 = 4$ then $p = \sigma - 8 \le 1$. But from (22),it follows that $\overline{g} > 2\omega = 2$. Therefore,

$$\widetilde{\mathcal{Z}} = 4 - 4k - \overline{g} - 1 \le 0.$$

Hence, k = 0, p = 0 and $\sigma = 8$. Moreover, $\widetilde{\mathcal{Z}} = 4 - \overline{g} - 1 = 0$.

By the way, from $\widetilde{\mathcal{Z}} = 0$, it follows that g = 4 and $g = 49 - 6t_4 = 4$, which has no solution.

11.2. case (2).

In case (2), we have $(3D + eK_S) \cdot D = 2e\overline{g} - (e-3)D^2 \ge u + \nu_1 > 0$ and then

$$\omega \ge \frac{2 + (e - 9)\overline{g}}{e - 3}.$$

Moreover,

$$2\omega - \overline{g} \ge \frac{e-11}{e-3}\overline{g}.$$

Hence, we may assume that e-11 < 0. However, $10 \ge e = \sigma + u + \nu_1 \ge \sigma + 3$. Thus, $\nu_1 = 3, \sigma = 7, k > 0$. Finally,

$$\widetilde{\mathcal{Z}} = -3k + 2(1 - \overline{g}) + 2\overline{g} = 2 - 3k < 0.$$

This is a contradiction.

Q.E.D.

12. AN INEQUALITY FOR CURVES WITH g > 0

Namely, we shall verify the following

Theorem 6. If $\sigma \geq 7$ and $g \geq 1$ then

$$\sigma \le \omega^2 + \omega + 2 \tag{23}$$

except for the type [7*9,1;1]. In this case, $\sigma = 7$ and $\omega = 1$; the right hand side is 4.

The right hand side of the inequality is obtained from that of the next inequality after putting g = 1.

$$\sigma \le \omega_1^2 + \omega_1 + 2 + 2\overline{g}. \tag{24}$$

Proof. May assume that $g \geq 2$. By

$$\omega^2 + \omega + 2 - (\omega_1^2 + \omega_1 + 2 + 2\overline{g}) = (\omega - \omega_1)(\omega + \omega_1 + 1) - 2\overline{g}$$
$$= \overline{g}(\omega + \omega_1 - 1)$$
$$= \overline{g}(2\omega - g),$$

if $2\omega \geq g$ then

$$\omega^2 + \omega + 2 \ge \omega_1^2 + \omega_1 + 2 + 2\overline{g} \ge \sigma.$$

Note that $2\omega - g = 5\overline{g} - 2D^2 - 1$.

We use the next lemma.

Lemma 5. If $\sigma \geq 13$ then $5\overline{g} - 2D^2 - 1 \geq 0$; hence $2\omega \geq g$.

Proof. Since (S, D) is minimal, by Hartshorne's lemma, we have either (1) $|2D + \sigma K_S| \neq \emptyset$ or (2) B = 1 and $|3D + eK_S| \neq \emptyset$.

In case (1), we have $(2D + \sigma K_S) \cdot D = 2\sigma \overline{g} - (\sigma - 2)D^2 \ge 0$ and then

$$5\overline{g} - 2D^2 \ge \frac{\sigma - 10}{2\sigma}D^2$$
.

We distinguish the various cases according to the signature of D^2 .

(i) If $D^2 < 0$ then $5\overline{g} - 2D^2 \ge 5\overline{g} \ge 5$. Hence,

$$2\omega - \overline{g} = 5\overline{g} - 2D^2 \ge 1.$$

(ii) If $D^2 = 0$ then $5\overline{q} - 2D^2 = 5\overline{q} > 5$. Hence,

$$2\omega - \overline{g} = 2\omega - \overline{g} = 5\overline{g} - 2D^2 = 5\overline{g} > 0.$$

(iii) If $D^2 > 0$ then

$$5\overline{g} - 2D^2 \ge \frac{\sigma - 10}{2\sigma}D^2 > 0.$$

In case (2), we have $(3D + eK_S) \cdot D = 2e\overline{g} - (e - 3)D^2 \ge u + \nu_1 > 0$ and then

$$5\overline{g} - 2D^2 > \frac{e - 15}{2e}D^2.$$

By $e - \sigma = \nu_1 + u \ge \nu_1$, we get $e \ge \sigma + 2 \ge 16$.

Hence, we are done.

Q.E.D.

12.1. final case.

We shall show that when $\sigma \leq 12$ and g > 0,

$$\sigma < \omega^2 + \omega + 2$$
.

Actually, if $\omega \geq 3$, then $\omega^2 + \omega + 2 \geq 14$. However, if $\omega = 2$ then $\omega^2 + \omega + 2 = 8$ and by the list of types with $\omega \leq 2$ in the appendix, we obtain $\sigma = 8$ if g > 1.

Last, if $\omega = 1$ then the type turns out to be [7 * 9, 1; 1].

Note that if $\omega^2 + 3\omega + 2 = \sigma$ then $2g\omega_1 + \overline{g}^2 + \overline{g} = 0$; hence either 1) g = 0 or 2) g = 1 and $\omega_1 = 0$. In the last case, $\omega_1^2 + \omega_1 + 2 + 2\overline{g} = 2 \ge \sigma$, which contradicts the hypothesis saying $\sigma \geq 7$. Hence, the proof in the case when g = 0 is complete.

13. Matsuda's inequality

Replacing ω_1 by $\alpha - 2\overline{g}$, from $\sigma \leq \omega_1^2 + \omega_1 + 2 + 2\overline{g}$, we obtain

$$\sigma \le \alpha^2 + (1 - 4\overline{g})\alpha + 4\overline{g}^2 + 2. \tag{25}$$

Then

$$\alpha^{2} + 5\alpha + 6 - (\alpha^{2} + (1 - 4\overline{g})\alpha + 4\overline{g}^{2} + 2)$$

$$= 4g(\alpha + 1 - \overline{g})$$

$$= 4g(\omega + 1)$$

$$\geq 8g,$$

since $\alpha - \overline{g} = \omega \ge 1$.

Therefore, we get

$$\alpha^2 + 5\alpha + 6 > \sigma + 8q > \sigma$$

FIGURE 2

provided that $\sigma \geq 7$.

13.1. case in which g > 0. We shall show that if g > 0 then $\sigma \le \alpha^2 + \alpha + 2$. This was first proved by Matsuda ([9]).

As a matter of fact, whenever $\overline{g} = g - 1 \ge 0$, we get

$$\alpha^2 + \alpha + 2 - (\alpha^2 + (1 - 4\overline{g})\alpha + 4\overline{g}^2 + 2) = 4\overline{g}(\alpha - \overline{g}) = 4\overline{g}\omega \ge 0.$$

Hence, by Theorem 4.

$$\alpha^2 + \alpha + 2 \ge \alpha^2 + (1 - 4\overline{g})\alpha + 4\overline{g}^2 + 2 \ge \sigma.$$

Thus we obtain

Theorem 7. Assuming that $\sigma \geq 7$, we obtain

$$\alpha^2 + 5\alpha + 6 \ge \sigma$$
.

If the equality holds, then g = 0. Moreover, if g > 0 then

$$\alpha^2 + \alpha + 2 \ge \sigma$$
.

Table 24

14. PAIRS WITH $\omega \leq 4$

14.1. case in which $\nu_1 \leq 3$. As before $\sigma \geq 7$ is assumed. If $\nu_1 \leq 3$, then $\omega = \frac{\tau_3}{2} - 9 + t_2$.

If
$$\nu_1 \leq 3$$
, then $\omega = \frac{\tau_3}{2} - 9 + t_2$.

Moreover, if $\sigma \geq 8$ and $\nu_1 \leq 3$, then $\omega = \frac{\tau_3}{2} - 9 + t_2 \geq \frac{(\sigma - 3)(\widetilde{B} - 6)}{2} - 9 \geq 6$.

If $\sigma = 8$ and $\omega = 6$, then the type is [8 * 10, 1 : 1].

If $\sigma = 7$, then $\nu_1 \leq 2\sigma/2$; hence $\nu_1 \leq 3$ and $\omega \geq 1$.

Furthermore,

- if $\omega = 1$ then the type is [7*9,1;1];
- if $\omega = 2$ then the type is [7*9,1;2];
- if $\omega = 3$ then the type is $[7 * 9, 1; 2^2]$;
- if $\omega = 4$ then the type is $[7 * 9, 1; 2^3]$;
- if $\omega = 5$ then the type is either $[7 * 9, 1; 2^4]$ or [7 * 10, 1; 1].

In that follows we assume that $\nu_1 \geq 4$.

Here, assuming $\omega = 2, 3, 4$, we shall determine the types of pairs (S, D). First, we note that $B \leq 2$ by Proposition 5 saying that $\omega \geq 12$ if $B \geq 3$.

14.2. case in which $\lambda > 1$.

First, we suppose that $\lambda = k - \omega_1 \ge 1$.

14.3. case in which $\lambda \geq 1$ and $p \geq 1$.

Assume that $\lambda \geq 1$. Thus

$$\nu_1 \le \frac{-\tilde{k} - \omega + 3\overline{g}}{\lambda}.$$

By $\nu_1 \geq 4$, we get

$$4\lambda = 4k - 4\omega + 4\overline{q} < -\tilde{k} - \omega + 3\overline{q};$$

hence,

$$\overline{g} \le 3\omega - (4k + \tilde{k}). \tag{26}$$

If $p \geq 1$, then by the formula (28), $\overline{g} \leq 3\omega - 13$. So, from $\overline{g} \geq -1$, it follows that $\omega \geq 4$. Furthermore, if $\omega = 4$, then $\overline{g} = -1$. However, by (4),

$$-\omega_1 + 2\overline{g} \ge \lambda + p(k - 2p) \ge 0.$$

Hence, if $\omega = 4$ then $2\overline{g} \geq \omega_1 = 4 - \overline{g}$. Thus, $3\overline{g} \geq 4$, which contradicts $\overline{g} = -1$.

Therefore, if $p \ge 1$ and $\lambda \ge 1$, then $\omega \ge 5$.

14.4. **case in which** $\lambda \geq 1$ **and** $p = 0, u \geq 1$. Assume that p = 0. Then $k = 2u, \lambda = 2u - \omega + \overline{g}$ and so $\overline{g} = \lambda - 2u + \omega$. Hence,

$$\nu_1 \le \frac{3\overline{g} - \omega}{\lambda}$$

$$= \frac{2\omega - 6u + 3\lambda}{\lambda}$$

$$= \frac{2\omega - 6u}{\lambda} + 3.$$

By $\nu_1 \geq 4$, we get

$$4 \le \nu_1 \le \frac{2\omega - 6u}{\lambda} + 3.$$

Hence,

$$\omega - 3u > 0. \tag{27}$$

Therefore,

$$\nu_1 < 2\omega - 6u + 3$$
.

Accordingly,

$$\sigma \le 4\omega - 12u + 6. \tag{28}$$

Then by the formula 28,

$$8 \le \sigma \le 4\omega - 12u + 6$$
.

If $\omega = 2$ or 3 or 4 then $\omega = 4$ and u = 1.

Thus, $Y=8\nu_1+2u+\omega_1=8\nu_1+2+4-\overline{g}$. Moreover, $\sigma=8$ or 10. Hence, $\nu_1=4$ or 5.

By $\lambda = 2u - 4 + \overline{g} = \overline{g} - 2 \ge 1$, we have $\overline{g} \ge 3$.

$$\widetilde{\mathcal{Z}} = -2\nu_1 + (\nu_1 - 1)(4 - \overline{g}) + 2\overline{g}$$

if $\nu_1 = 4$ then $\widetilde{\mathcal{Z}} = 4 - \overline{g} \ge 0$. Hence, $\overline{g} = 4$ or 3.

Moreover, $\overline{g} = 4$ implies that $\widetilde{\mathcal{Z}} = 0$ and so $Y = 8\nu_1 + 2 = r\nu_1 = 4r$, a contradiction.

 $\overline{g} = 3$ implies that $\widetilde{\mathcal{Z}} = 1$. But $\widetilde{\mathcal{Z}} = 3t_3 + 4t_2 = 1$, which is absurd.

If $\nu_1 = 5$ then $\widetilde{\mathcal{Z}} = 6 - 2\overline{g} \ge 0$. Hence, $\overline{g} = 3$, $\widetilde{\mathcal{Z}} = 0$, which induces that $Y = 8\nu_1 + 3 = r\nu_1$, that is absurd.

14.5. case in which $\lambda \geq 1$ and k = 0.

Then $\lambda = k - \omega_1 \ge 1$; hence, $\overline{g} \ge 1 + \omega$.

Recall the formula

$$\widetilde{\mathcal{Z}} = 2\overline{q} + (\nu_1 - 1)\omega_1$$
.

By $\nu_1 \geq 4$ and $\omega_1 = \omega - \overline{g} \leq -1$, we obtain

$$0 \le \widetilde{\mathcal{Z}} \le 2\overline{g} + 3\omega_1 = 3\omega - \overline{g}.$$

Therefore,

$$3\omega \ge \overline{g}.$$
 (29)

14.5.1. case in which $\omega = 2$.

Suppose that $\omega = 2$. Then

$$6 = 3\omega \ge \overline{g} \ge \omega + 1 = 3.$$

We shall distinguish the various cases according to the value of \overline{g} .

(1) If $\overline{g} = 3$, then $\omega_1 = -1$ and so $\sigma \le \omega_1^2 + \omega_1 + 2g = 8$. But $\nu_1 \ge 4$ was assumed and so we get $\nu_1 = 4$ and $\sigma = 8$.

Since $\widetilde{\mathcal{Z}} = 7 - \nu_1 \ge 1$, it follows that $\widetilde{\mathcal{Z}} = 7 - \nu_1 \ge \nu_1 - 1$; thus $8 \ge 2\nu_1$ and so $\nu_1 = 4$. By $\widetilde{\mathcal{Z}} = 7 - \nu_1 = 3 = 3t_3 + 4t_2$, we get $t_3 = 1, t_2 = 0$.

Since $Y' = s\nu_1 - 1 = 3$, it follows that s = 1 and so the type is $[8*8; 4^7, 3]$.

(2) If $\overline{g} = 4$, then $\omega_1 = -2$ and so $\widetilde{\mathcal{Z}} = 10 - 2\nu_1 \ge 0$; thus $\nu_1 = 4$ or 5.

If $\nu_1 = 5$ then $\widetilde{\mathcal{Z}} = Y' = 0$ and so by $Y' = s\nu_1 - 2 = 5s - 2$, we arrive at a contradiction.

If $\nu_1 = 4$ then $\widetilde{\mathcal{Z}} = 2 = 3t_3 + 4t_2 = 0$, which has no solution.

- (3) If $\overline{g} = 5$, then $\omega_1 = -3$ and so $\widetilde{\mathcal{Z}} = 13 3\nu_1 \ge \nu_1 1$; thus $\nu_1 < 4$.
- (4) If $\overline{g} = 6$, then $\omega_1 = -4$ and so $\widetilde{\mathcal{Z}} = 16 4\nu_1 \ge 0$; thus $\nu_1 = 4$ and $\widetilde{\mathcal{Z}} = 0$. Hence, s=1 and the type becomes $[8*8;4^7]$.

14.5.2. case in which $\omega = 3$.

Suppose that $\omega = 3$. Then

$$9 = 3\omega > \overline{q} > \omega + 1 = 4$$
.

Furthermore,

$$\widetilde{\mathcal{Z}} = 2\overline{g} + (\nu_1 - 1)(3 - \overline{g}) = 3\overline{g} - 3 + (3 - \overline{g})\nu_1.$$

We shall distinguish the various cases according to the value of \overline{q} .

(1) If $\overline{g} = 4$ then $\omega_1 = -1$ and

$$\widetilde{\mathcal{Z}} = 9 - \nu_1$$
.

If $9 = \nu_1$ then $\widetilde{\mathcal{Z}} = 0$; hence, Y' = 0. But $Y = 8\nu_1 - 1 > 0$, a contradiction. Thus, $9 - \nu_1 \ge \nu_1 - 1$. Hence, $\nu_1 = 4$ or5.

If $\nu_1 = 5$ then $Y' = s\nu_1 - 1 = 4$ and so s = 1. The type is $[10 * 10; 5^7, 4]$.

If $\nu_1 = 4$ then $\widetilde{\mathcal{Z}} = 12 - 8 = 4 = 3t_3 + 4t_2$. Thus $t_3 = 0, t_2 = 1$. Y' = 4s - 1 = 2, a contradiction.

(2) If $\overline{g} = 5$ then $\omega_1 = -2$ and

$$\widetilde{\mathcal{Z}} = 12 - 2\nu_1$$
.

If $\widetilde{\mathcal{Z}}=0$ then $\nu_1=6,Y'=0$. Hence, $g=11^2-15r=6$, which is impossible.

Otherwise, $\widetilde{\mathcal{Z}} = 12 - 2\nu_1 \ge \nu_1 - 1$ then $\nu_1 = 4$

By $\widetilde{\mathcal{Z}} = 12 - 2\nu_1 = 4 = 3t_3 + 4t_2$, we get $t_2 = 1$ and so $Y' = s\nu_1 - 2 = 2$ and so s = 1. The type becomes $[8*8;4^7,2]$.

(3) If $\overline{g} = 6$ then $\omega_1 = -3$ and

$$\widetilde{\mathcal{Z}} = 15 - 3\nu_1 > 0,$$

which implies $\nu_1 = 4$ or 5.

If $\nu_1=4$ then $\widetilde{\mathcal{Z}}=15-3\nu_1=3$. Hence, $t_3=1$ and so $Y'=4s-3=s\nu_1-3=3$ and so 4s=6, a contradiction.

If $\nu_1 = 5$ then $\widetilde{\mathcal{Z}} = 0$; thus Y' = 0 and $Y' = s\nu_1 - 3 = 0$, contradiction.

(4) If $\overline{g} = 7$ then $\omega_1 = -4$ and

$$\widetilde{\mathcal{Z}} = 18 - 4\nu_1 \ge \nu_1 - 1,$$

which implies $\nu_1 < 4$, a contradiction.

(5) If $\overline{g} = 8$ then $\omega_1 = -5$ and

$$\widetilde{\mathcal{Z}} = 21 - 5\nu_1 \ge \nu_1 - 1,$$

which implies $\nu_1 < 4$, a contradiction.

(6) If $\overline{g} = 9$ then $\omega_1 = -6$ and

$$\widetilde{\mathcal{Z}} = 24 - 6\nu_1 > \nu_1 - 1$$

which implies $\nu_1 < 4$, a contradiction.

14.5.3. case in which $\omega = 4$.

Suppose that $\omega = 4$. Then

$$12 = 3\omega \ge \overline{g} \ge \omega + 1 = 5.$$

Furthermore,

$$\widetilde{\mathcal{Z}} = 2\overline{g} + (\nu_1 - 1)(4 - \overline{g}) = 3\overline{g} - 4 + (4 - \overline{g})\nu_1.$$

We shall distinguish the various cases according to the value of \overline{g} .

(1) If $\overline{g} = 5$ then $\omega_1 = -1$ and

$$\widetilde{\mathcal{Z}} = 11 - \nu_1$$
.

But by Y' = 11s - 1 > 0, we have $\widetilde{Z} > 0$; thus $\widetilde{Z} \ge \nu_1 - 1$. Hence, $\nu_1 \le 6$. If $\nu_1 = 6$ then $\widetilde{Z} = 11 - \nu_1 = 5 = 5t_5 + 8t_4 + \cdots$. Hence, $t_5 = 1$ and Y' = 6s - 1 = 5. Hence, s = 1 and the type becomes $[12 * 12; 6^7, 5]$.

If $\nu_1 = 5$ then $\widetilde{\mathcal{Z}} = 11 - \nu_1 = 6 = 4t_4 + 6t_3 + \cdots$. Hence, $t_3 + t_2 = 1$, which implies that Y' = 2 or 3. But $Y' = 5s - 1 \ge 4$, a contradiction.

If $\nu_1 = 4$ then $\widetilde{\mathcal{Z}} = 11 - \nu_1 = 7 = 3t_3 + 4t_2$; hence, $t_3 = t_2 = 1$. Therefore, Y' = 5. However, Y' = 4s - 1; a contradiction.

(2) If $\overline{g} = 6$ then $\omega_1 = -2$ and

$$\widetilde{\mathcal{Z}} = 14 - 2\nu_1 > 0.$$

Hence, $\nu_1 \leq 7$ and if $\nu_1 = 7$ then Y' = 0. But $Y' = s\nu_1 - 2 = 0$, a contradiction.

But $\widetilde{\mathcal{Z}} = 14 - 2\nu_1 \ge \nu_1 - 1$, which implies that $\nu_1 \le 5$.

If $\nu_1 = 5$ then $\hat{Z} = 14 - 2\nu_1 = 4 = 4t_4 + 6t_3 + 6t_2$. Thus $t_4 = 1$ and $Y' = s\nu_1 - 2 = 5s - 2 = 4$, a contradiction.

If $\nu_1 = 4$ then $\widetilde{\mathcal{Z}} = 14 - 2\nu_1 = 6 = 3t_3 + 4t_2$. Thus $t_3 = 2$ and $Y' = s\nu_1 - 2 = 6$; we get $s\nu_1 = 4s = 8$. Hence, s = 2 and the type becomes $[8*8;4^6,3^2]$.

(3) If $\overline{q} = 7$ then $\omega_1 = -3$ and

$$\widetilde{\mathcal{Z}} = 17 - 3\nu_1 \ge \nu_1 - 1.$$

Hence, $\nu_1 \leq 4$ and $\nu_1 = 4$.

But $\widetilde{\mathcal{Z}} = 5 = 3t_3 + 4t_2$, which has no solution.

(4) If $\overline{g} = 8$ then $\omega_1 = -4$ and

$$\widetilde{\mathcal{Z}} = 20 - 4\nu_1 > 0.$$

Hence, $\nu_1 \leq 5$ and if $\nu_1 = 5$ then Y' = 5s - 4 = 0, a contradiction.

If $\nu_1 = 4$ then

$$\widetilde{\mathcal{Z}} = 20 - 4\nu_1 = 4 = 3t_3 + 4t_2.$$

Hence, $t_2 = 1$ and then Y' = 4s - 4 = 2, a contradiction.

(5) If $\overline{g} = 9$ then $\omega_1 = -5$ and

$$\widetilde{\mathcal{Z}} = 23 - 5\nu_1 > 0.$$

Hence, $\nu_1 = 4$.

$$\widetilde{\mathcal{Z}} = 23 - 5\nu_1 = 3 = 3t_3 + 4t_2.$$

Hence, $t_3 = 1$ and then Y' = 4s - 5 = 3. Thus s = 2 is derived. The type becomes $[8 * 8; 4^6, 3]$.

(6) If
$$\overline{g} = 10$$
 then $\omega_1 = -6$. and then

$$\widetilde{\mathcal{Z}} = 26 - 6\nu_1 > 0.$$

Hence, $\nu_1 = 4$.

$$\widetilde{\mathcal{Z}} = 26 - 6\nu_1 = 2 = 3t_3 + 4t_2.$$

This has no solution.

(7) If
$$\overline{g} = 11$$
 then $\omega_1 = -7$ and

$$\widetilde{\mathcal{Z}} = 29 - 7\nu_1 > 0.$$

Hence, $\nu_1 = 4$.

$$\widetilde{\mathcal{Z}} = 1 = 3t_3 + 4t_2.$$

This has no solution.

(8) If
$$\overline{g} = 12$$
 then $\omega_1 = -8$ and

$$\widetilde{\mathcal{Z}} = 32 - 8\nu_1 > 0.$$

Hence, $\nu_1 = 4$.

$$\widetilde{\mathcal{Z}} = 0.$$

Hence,
$$Y' = s\nu_1 - 8 = 4s - 8 = (r - t)4$$
.

Therefore, r = t + s - 2 = 8 - 2 = 6. The type becomes $[8 * 8; 4^6]$.

14.6. case in which $\lambda \leq 0$ and $p \geq 1$.

Given $\omega_1 \geq k \geq wp \geq 3$ and $p \geq 1$, one has $\omega \geq 3 + \overline{g}$.

14.6.1. case in which $\omega = 2$.

Then g = u = 0 and so

•
$$X = 8\nu_1^2 + 6\nu_1 + 1 + \omega_1 - 2\overline{g} = 8\nu_1^2 + 6\nu_1 + 6,$$

• $Y = 8\nu_1 + 1 + \omega_1 = 8\nu_1 + 6.$

$$Y = 8\nu_1 + 1 + \omega_1 = 8\nu_1 + 6$$

Thus, $\widetilde{\mathcal{Z}} = -6 < 0$, a contradiction.

14.6.2. case in which $\omega = 3$.

Then g = 0, 1.

If g = 1 then k = 3, u = 0. Hence,

•
$$X = 8\nu_1^2 + 6\nu_1 + 1 + \omega_1 - 2\overline{g} = 8\nu_1^2 + 6\nu_1 + 4$$
,
• $Y = 8\nu_1 + 1 + \omega_1 = 8\nu_1 + 6$.

•
$$V = 8\nu_1 + 1 + \omega_1 = 8\nu_1 + 6$$

Thus, $\widetilde{\mathcal{Z}} = -4 < 0$, a contradiction.

If g = 0 then k = w, u = 0 and so

•
$$X = 8\nu_1^2 + 2w\nu_1 + w + 4$$
,
• $Y = 8\nu_1 + w + 4$.

•
$$Y = 8\nu_1 + w + 4$$
.

Thus, $\widetilde{\mathcal{Z}} = (4-w)\nu_1 - w - 4 \ge 0$. Hence, w = 3 and $\widetilde{\mathcal{Z}} = \nu_1 - 7$.

If $\widetilde{\mathcal{Z}} = 0$ then $\nu_1 = 7$ and $Y = 8\nu_1 + 7 = r\nu_1$. Hence, r = 9 and the type turns out to be $[15 * 22, 1; 7^9]$.

Otherwise, $\widetilde{\mathcal{Z}} = \nu_1 - 7 \ge \nu_1 - 1$, a contradiction.

14.6.3. case in which $\omega = 4$.

Then q = 0, 1, 2. We distinguish the following cases according to q.

- (1) If g = 0 then $\omega_1 = 5$. Hence,
 - $X = 8\nu_1^2 + 2w\nu_1 + w 2 + 7$, $Y = 8\nu_1 + w + 5$.

Thus, $\widetilde{\mathcal{Z}} = (5 - w)\nu_1 - 5 - w$.

If
$$w = 3$$
 then $\widetilde{\mathcal{Z}} = 2\nu_1 - 8 \ge 0$.

Suppose that $\widetilde{Z} = 0$, i.e. $\nu_1 = 4$. Then $Y = 8\nu_1 + w + 5 = 8\nu_1 + 8 = r\nu_1$. From $8 = (r - 8)\nu_1$, it follows that $r = 10, \nu_1 = 4$. Hence, the type becomes $[9*13,1;4^{10}].$

Otherwise, $\widetilde{\mathcal{Z}} = 2\nu_1 - 8 > \nu_1 - 1$. Then $\nu_1 < 4$, a contradiction.

If
$$w = 4$$
 then $\widetilde{\mathcal{Z}} = \nu_1 - 9$.

Suppose that $\widetilde{\mathcal{Z}} = 0$, i.e. $\nu_1 = 9$. Then $Y = 8\nu_1 + 9 = r\nu_1$. From $9 = (r - 8)\nu_1$, it follows that $r = 9, \nu_1 = 9$. Hence, the type becomes $[19 * 19; 9^9].$

Otherwise, $\widetilde{\mathcal{Z}} = \nu_1 - 9 \ge \nu_1 - 1$, a contradiction.

- (2) If g = 1 then $\omega_1 = 4$. Hence, $k = w \le \omega_1 = 4$.
 - $X = 8\nu_1^2 + 2w\nu_1 + w 2 + 4$,
 - $Y = 8\nu_1 + w + 4$.

Thus, $\widetilde{\mathcal{Z}} = (4-w)\nu_1 - 2 - w \ge 0$. Then w = 3 and $\widetilde{\mathcal{Z}} = \nu_1 - 5$. Hence, $\nu_1 = 5$ and $Y = 8\nu_1 + 7 = r\nu_1$, a contradiction.

- (3) If g=2 then $\omega_1=3$. Hence, $k=w\leq \omega_1=3$. Hence w=3 and
 - $X = 8\nu_1^2 + 6\nu_1 + 2$, $Y = 8\nu_1 + 6$.

Thus, $\widetilde{\mathcal{Z}} = -2 > 0$, a contradiction.

14.7. case in which $\lambda \leq 0$ and $p = 0, u \geq 1$.

Given $\omega_1 \geq k = 2u \geq 2$, one has $\omega \geq 2u + \overline{g}$. Moreover,

- $X = 8\nu_1^2 + 4u\nu_1 + \omega_1 2\overline{g}$, $Y = 8\nu_1 + 2u + \omega_1$.

Thus, $\widetilde{\mathcal{Z}} = -2u\nu_1 + (\nu_1 - 1)\omega_1 + 2\overline{g}$.

14.7.1. case in which $\omega = 2$.

If $\omega = 2$ then by $\omega = 2 \ge 2u + \overline{g}$, we get u = 1 and $\overline{g} = -1, 0$. Hence, $\widetilde{\mathcal{Z}} = -2\nu_1 + (\nu_1 - 1)(2 - \overline{g}) + 2\overline{g}.$

If $\overline{g} = -1$ then $\widetilde{\mathcal{Z}} = \nu_1 - 5$. In this case, $\nu_1 = 5$ and thus $Y = 8\nu_1 + 2 + 3 = r\nu_1$. Hence, r = 9 and the type becomes $[10 * 11; 5^9]$.

If $\overline{g} = 0$ then $\widetilde{\mathcal{Z}} = -2$, a contradiction.

14.7.2. case in which $\omega = 3$.

If $\omega = 3$ then u = 1 and $\overline{g} = -1, 0, 1$.

We distinguish the various cases according to g.

- If $\overline{g} = -1$ then $\omega = 4$ and $\widetilde{\mathcal{Z}} = 2\nu_1 6 \ge 2$, which is impossible.
- If $\overline{g} = 0$ then $\omega = 3$ and $\widetilde{\mathcal{Z}} = \nu_1 3 \ge 1$, which is impossible.
- If $\overline{g} = 1$ then $\omega = 2$ and $\widetilde{\mathcal{Z}} = 0$. Since $Y = 8\nu_1 + 2 + 2 = r\nu_1$, it follows that $4 = (r 8)\nu_1$. Hence, r = 9 and $\nu_1 = 4$ and the type becomes $[8 * 9; 5^9]$.

14.7.3. case in which $\omega = 4$.

If $\omega = 4$ then $\omega = 4 \ge 2u + \overline{g}$.

Furthermore, if u = 2 then $\overline{g} = -1, 0$. If u = 1 then $\overline{g} = -1, 0, 1, 2$.

We distinguish the various cases according to u and g.

(1) If u = 2 and $\overline{g} = -1$, then

$$\widetilde{\mathcal{Z}} = (5 - 2u)\nu_1 - 7 = \nu_1 - 7.$$

If $\nu_1 = 7$ then $\widetilde{\mathcal{Z}} = 0$ and $Y = 8\nu_1 + 9 = r\nu_1$, a contradiction. Otherwise, $\widetilde{\mathcal{Z}} = \nu_1 - 7 \ge \nu_1 - 1$, a contradiction.

- (2) If u=2 and $\overline{q}=0$, then $\widetilde{\mathcal{Z}}=-4$, a contradiction.
- (3) If u = 1 and $\overline{g} = -1$, then $\omega_1 = 5$ and

$$\widetilde{\mathcal{Z}} = 3\nu_1 - 7.$$

If $t_{\nu_1-1} = 1$ then $\widetilde{\mathcal{Z}} - (\nu_1 - 1) = 2\nu_1 - 6$. In this case, the equation $2\nu_1 - 6 = 2(\nu_1 - 2)t_{\nu_1-2} + \cdots$ has no solution. If $t_{\nu_1-1} = 0$ then $\widetilde{\mathcal{Z}} = (2\nu_1 - 4)t_{\nu_1-2} + \cdots$.

If there exist at least two positive t_{ν_1-j} , then there exists an integer j such that $\widetilde{\mathcal{Z}} \geq 2j(\nu_1-j)$ where $\nu_1-j\geq 2$.

Then

$$j+1+\frac{j-4}{2j-3} \ge \nu_1 \ge j+2.$$

Hence $-1 \ge j$, a contradiction.

However, from $3\nu_1 - 7 = j(\nu_1 - j)$, it follows that

$$j+3+\frac{2}{j-3}=\nu_1.$$

Hence, j = 5 or 4. In both cases, $\nu_1 = 9$. But,

$$Y = 8\nu_1 + 2 + 5 = t\nu_1 + \nu_1 - j$$
.

Then $7+j=(t-7)\nu_1=9(t-7)$. Recalling that 7+j=12 or 11, we arrive at a contradiction.

(4) If u = 1 and $\overline{g} = 0$, then $\omega_1 = 4$ and

$$\widetilde{\mathcal{Z}} = 2\nu_1 - 4$$
.

Then $t_{\nu_1-2} = 1$ and

$$Y = 8\nu_1 + 2 + 4 = t\nu_1 + \nu_1 - 2.$$

Hence, $8 = (t - 7)\nu_1$. Thus we have two cases:

- $\nu_1 = 8, t = 7$, where the type is $[16 * 17; 8^8, 6]$;
- $\nu_1 = 4, t = 9$, where the type is $[8 * 9; 4^9, 2]$.
- (5) If u = 1 and $\overline{g} = 1$, then $\omega_1 = 3$ and

$$\widetilde{\mathcal{Z}} = \nu_1 - 1$$
.

Then $t_{\nu_1-1} = 1$ and

$$Y = 8\nu_1 + 2 + 3 = t\nu_1 + \nu_1 - 1$$
.

Hence, $6 = (t-7)\nu_1$. Then t = 8 and $\nu_1 = 6$. The type becomes [12*13;6⁸,5].

(6) If u = 1 and $\overline{g} = 2$, then $\omega_1 = 2$ and

$$\widetilde{\mathcal{Z}} = 2 \ge \nu_1 - 1$$
.

Hence, $\nu_1 < 4$, a contradiction.

14.8. case in which $\lambda \leq 0$ and k = 0.

In this case, p=0, u=0 and so $\overline{g} \leq \omega$. We obtain the fundamental equalities:

- $X' = s\nu_1^2 + \omega_1 2\overline{g}$, $Y' = s\nu_1 + \omega_1$.

Then $\widetilde{\mathcal{Z}} = (\nu_1 - 1)\omega_1 + 2\overline{q}$.

We shall use the following symbol:

•
$$\varepsilon(t) = \sum_{j=1}^{\nu_1 - 2} t_{\nu_1 - j}$$

14.8.1. case in which $\omega = 2$. Then by $\omega_1 = \omega - \overline{g} = 2 - \overline{g} \ge 0$, we see that

We shall distinguish the various cases according to the value of \overline{g} .

(1) $\overline{g} = -1$. Then $\omega_1 = 3$ and

$$\widetilde{\mathcal{Z}} = 3\nu_1 - 5.$$

(i) First assume that $t_{\nu_1-1}=1$. If $\varepsilon(t)=2$, then we find j such that $\widetilde{\mathcal{Z}} - (\nu_1 - 1) = 2\nu_1 - 4 = j(\nu_1 - j)$. Solving this we have j = 2 or $j + 2 = \nu_1$. Therefore, $Y' = s\nu_1 + 3 = \nu_1 - 1 + 2$ or $Y' = s\nu_1 + 3 = \nu_1 - 1 + \nu_1 - 2$.

However the former case does not occur. In the last case, $6 = (2 - s)\nu_1$. Thus s = 1 and $\nu = 6$. The type becomes $[12 * 12; 6^7, 5, 4]$.

If $\varepsilon(t) \geq 3$, then there exists a number j such that $2\nu_1 - 4 \geq 2j(\nu_1 - j)$, where $\nu_1 - j \geq 2$. Then we get

$$j+1-\frac{1}{j-1} \ge \nu_1 \ge j+2.$$

This is a contradiction.

(ii) Assume that $t_{\nu_1-1}=0$. Then by $Y'=s\nu_1+\omega_1>\nu_1,\,\varepsilon(t)\geq 3$ and so there exists j such that $3\nu_1-5\geq 2j(\nu_1-j)$, where $\nu_1-j\geq 2$. Then

$$j+1+\frac{j-2}{2j-3} \ge \nu_1 \ge j+2.$$

We have $\frac{j-2}{2j-3} \ge 1$, which induces $1 \ge j$, a contradiction.

(iii) Assume that $t_{\nu_1-1}=2$.

Then

$$\widetilde{\mathcal{Z}} - 2(\nu_1 - 1) = \nu_1 - 3 \ge 2(\nu_1 - 2).$$

Thus, $2 > \nu_1$, a contradiction.

It is easy to derive a contradiction from $t_{\nu_1-1} > 2$.

(2) $\overline{g} = 0$. Then $\omega_1 = 2$ and

$$\widetilde{\mathcal{Z}} = 2\nu_1 - 2 = (\nu_1 - 1)t_{\nu_1 - 1} + 2(\nu_1 - 2)(t_{\nu_1 - 2} + t_2) + \cdots$$

Thus $t_{\nu_1-1} = 2$ and $Y' = 2\nu_1 - 2 = s\nu_1 + 2$. From this it follows that $4 = (2 - s)\nu_1$. Hence, s = 1 and $\nu_1 = 4$. The type becomes $[8 * 8; 4^7, 3^2]$.

(3) $\overline{g} = 1$. Then $\omega_1 = 1$ and by the inequality (2), we get

$$\sigma < \omega_1^2 + \omega_1 + 2 + 2\overline{q} = 2 + 2 + 2.$$

This contradicts the hypothesis that $\sigma \geq 7$.

(4) $\overline{q} = 2$. Then $\omega_1 = 0$ and by the inequality (2), we get

$$\sigma < \omega_1^2 + \omega_1 + 2 + 2\overline{g} = 2 + 4$$
.

This contradicts the hypothesis that $\sigma \geq 7$.

14.8.2. case in which $\omega = 3$. Then by $\omega - \overline{g} = 3 - \overline{g} \ge 0$, we see that $\overline{g} = -1, 0, 1, 2$.

We distinguish the various cases according to the value of \overline{g} .

(1) $\overline{g} = -1$. Then $\omega_1 = 4$ and

$$\widetilde{\mathcal{Z}} = 4\nu_1 - 6.$$

(i) First assume that $t_{\nu_1-1}=1$.

If $\varepsilon(t) = 2$, then we can find j such that $\widetilde{\mathcal{Z}} - (\nu_1 - 1) = 3\nu_1 - 5 = j(\nu_1 - j)$. Thus

$$j+3+\frac{4}{j-3}=\nu_1.$$

From this we obtain the next table:

Table 25

j-3	j	j+3	ν_1	$\nu_1 - j$	$\nu_1 - 1$	Y'
4	7	10	11	4	10	14 or 17
2	5	8	10	5	9	14
1	4	7	11	7	10	14 or 17

Recalling that $Y' = s\nu_1 + 4$, we obtain $\nu_1 = 9, s = 1, Y' = 14$. Thus the type becomes $[20 * 20; 10^7, 9, 5]$.

If $\varepsilon(t) \geq 3$, then we find j such that $\widetilde{\mathcal{Z}} - (\nu_1 - 1) = 3\nu_1 - 5 \geq 2j(\nu_1 - j)$. Thus $2j^2 - 5 \ge (2j - 3)\nu_1$ and so

$$j+1-\frac{2}{2j-3} \ge \nu_1 \ge j+2.$$

This is impossible.

(ii) Assume that $t_{\nu_1-1}=2$.

If $\varepsilon(t) = 2$, then we find j > 1 such that

$$\widetilde{\mathcal{Z}} - 2(\nu_1 - 1) = 2\nu_1 - 4 = j(\nu_1 - j).$$

Thus

$$j^2 - 4 = (j-2)\nu_1$$
.

If j > 2 then $\nu_1 + j + 2$.

If j = 2 then $\widetilde{\mathcal{Z}} - 2(\nu_1 - 1) = 2\nu_1 - 4t_{\nu_1 - 2}$. Hence, $t_{\nu_1 - 2} = 1$ and $Y' = 2(\nu_1 - 1) + \nu_1 - 2 = 3\nu_1 - 4$; thus $Y' = s\nu_1 + 4 = 3\nu_1 - 4$. Hence, $8 = (3 - s)\nu_1$.

We have two cases:

- $s = 1, \nu_1 = 4$. The type becomes $[8 * 8; 4^7, 3^2, 2]$. $s = 2, \nu_1 = 8$. The type becomes $[16 * 16; 8^6, 7^2, 6]$.

Moreover, if $j + 2 = \nu_1$ then $\widetilde{\mathcal{Z}} - 2(\nu_1 - 1) = (2\nu_1 - 4)t_2$. Hence, $t_2 = 1$ and $Y' = 2(\nu_1 - 1) + 2 = 2\nu_1$; thus $Y' = s\nu_1 + 4 = 2\nu_1$. Hence, $= (2 - s)\nu_1$. Therefore, $s = 1, \nu_1 = 4$. The type becomes $[8 * 8; 4^7, 3^2, 2]$.

If $\varepsilon(t) > 2$, then we find j > 1 such that

$$\widetilde{\mathcal{Z}} - 2(\nu_1 - 1) = 2\nu_1 - 4 \ge 2j(\nu_1 - j).$$

From this we can derive a contradiction.

- (iii) Assume that $t_{\nu_1-1}=3$. Then $\widetilde{\mathcal{Z}}-3(\nu_1-1)=\nu_1-3$, contradiction.
- (iv) Assume that $t_{\nu_1-1}=4$. Then $\widetilde{\mathcal{Z}}-4(\nu_1-1)=-2$, contradiction.
- (v) Assume that $t_{\nu_1-1} = 0$ and $t_{\nu_1-2} = 1$. If $\varepsilon(t) = 2$, then we find j > 1 such that

$$\widetilde{\mathcal{Z}} - 2(\nu_1 - 2) = 2\nu_1 - 2 = j(\nu_1 - j).$$

Thus

$$j+2+\frac{2}{j-2}=\nu_1.$$

From this we obtain the next table:

Table 26

But $Y' = s\nu_1 + 4 = 7s + 4$, which is not equal to 8 or 9. If $\varepsilon(t) > 2$, then we find j > 1 such that

$$\widetilde{\mathcal{Z}} - 2(\nu_1 - 2) = 2\nu_1 - 2 \ge 2j(\nu_1 - j).$$

From this it is easy to derive a contradiction.

(2)
$$\overline{g} = 0$$
. Then $\omega_1 = 3$ and $\widetilde{\mathcal{Z}} = 3\nu_1 - 3$.

(i) First assume that $t_{\nu_1-1}=1$. Then $\widetilde{\mathcal{Z}}-(\nu_1-1)=2(\nu_1-1)$. If $\varepsilon(t)=2$, then we find j>1 such that

$$\widetilde{\mathcal{Z}} - 2(\nu_1 - 2) = 2\nu_1 - 2 = j(\nu_1 - j).$$

Thus

$$j+2+\frac{2}{j-2}=\nu_1.$$

From this we obtain the next table:

TABLE 27

But $Y' = s\nu_1 + 3 = 7s + 3$, which means j = 3, s = 1. The type becomes $[14 * 14; 7^7, 6, 4]$.

(ii) Assume that $t_{\nu_1-1}=2$. Then $\widetilde{\mathcal{Z}}-2(\nu_1-1)=\nu_1-1$. If $\varepsilon(t)=3$, then we can find j>1 such that

$$\widetilde{\mathcal{Z}} - 2(\nu_1 - 1) = \nu_1 - = j(\nu_1 - j).$$

Then j = 1 or $j = \nu_1 - 1$, a contradiction.

(iii) Assume that $t_{\nu_1-1} = 3$. Then $\widetilde{\mathcal{Z}} - 3(\nu_1 - 1) = 0$. Thus $Y' = 3(\nu_1 - 1)$. By the way, from $Y' = s\nu_1 + 3$, it follows that $s\nu_1 + 3 = 3(\nu_1 - 1)$. Hence, $6 = (3-s)\nu_1$. Therefore, $\nu_1 = 6$ and s = 2. The type becomes $[12*12; 6^6, 5^3]$.

(3)
$$\overline{g} = 1$$
. Then $\omega_1 = 2$ and $\widetilde{\mathcal{Z}} = 2\nu_1$.

First assume that $t_{\nu_1-1}=1$. Then $\widetilde{\mathcal{Z}}-(\nu_1-1)=\nu_1+1$. If $\varepsilon(t)=2$, then we find j>1 such that

$$\widetilde{\mathcal{Z}} - (\nu_1 - 2) = \nu_1 + 1 = j(\nu_1 - j).$$

Thus

$$j+1+\frac{2}{j-1}=\nu_1.$$

From this we obtain the next table:

Table 28

Thus $\nu_1 = 5$ and Y' = 5s + 2, by definition. Then s = 1 and the type becomes $[10 * 10; 5^7, 4, 3]$.

(4)
$$\overline{g} = 2$$
. Then $\omega_1 = 1$ and $\widetilde{\mathcal{Z}} = \nu_1 + 3$.

First assume that $t_{\nu_1-1}=1$. Then $\widetilde{\mathcal{Z}}-(\nu_1-1)=4$. If $\varepsilon(t)=2$, then we find j>1 such that

$$\widetilde{\mathcal{Z}} - (\nu_1 - 1) = 4 = j(\nu_1 - j).$$

Thus $j = 2, \nu_1 = 4$. Hence, Y' = 3 + 2. Moreover, $Y' = s\nu_1 + 1 = 4s + 1 = 5$. Hence, s = 1. The type becomes $[8 * 8; 4^7, 3, 2]$.

(5)
$$\overline{g} = 3$$
. Then $\omega_1 = 0$ and $\widetilde{\mathcal{Z}} = 6$. From $\widetilde{\mathcal{Z}} = 6 = (\nu_1 - 1)t_{\nu_1 - 1} + \cdots$, it follows that $\nu_1 = 4, t_3 = 2$. But $Y' = 4s = s\nu_1 = 3 + 3 = 6$, a contradiction.

14.8.3. case in which $\omega = 4$ and g = 0.

Then by $\omega - \overline{g} = 4 - \overline{g} \ge 0$, we see that $\overline{g} = -1, 0, 1, 2, 3$.

We distinguish the various cases according to the value of \overline{g} .

(1)
$$\overline{g} = -1$$
. Then $\omega_1 = 5$ and

$$\widetilde{\mathcal{Z}} = 5\nu_1 - 7.$$

(i) First assume that $t_{\nu_1-1}=1$.

If $\varepsilon(t) = 2$, then we find j such that $\widetilde{\mathcal{Z}} - (\nu_1 - 1) = 4\nu_1 - 6 = j(\nu_1 - j)$. Thus

$$j+4+\frac{4}{j-4}=\nu_1.$$

From this we obtain the next table: By $Y' = s\nu_1 + 5$, we conclude that s = 1 and $\nu_1 = 15$. Hence, the type becomes $[30 * 30; 15^7, 14, 6]$.

Table 29

j-4	j	j+4	ν_1	$\nu_1 - j$	$\nu_1 - 1$	Y'
10	14	18	19	5	18	23
5	9	13	15	6	14	21
2	6	10	15	9	14	23
1	5	9	19	14	18	32

If $\varepsilon(t) \geq 3$, then we find j such that

$$4\nu_1 - 6 \ge 2j(\nu_1 - j)$$
.

Hence,

$$j+2+\frac{4}{j-1} \ge \nu_1 \ge 2j,$$

and so

$$j + \frac{1}{j-1} \ge j.$$

Thus, j=2.

Therefore, if $\varepsilon(t) = 3$, then we find j such that $\widetilde{\mathcal{Z}} - (\nu_1 - 1) - 2(\nu_1 - 2) = 2\nu_1 - 2 = j(\nu_1 - j)$. Thus

$$j+2+\frac{2}{j-2}=\nu_1.$$

From this we obtain the next table:

Table 30

j-2	j	j+2	ν_1	$\nu_1 - j$	$\nu_1 - 1$	$\nu_1 - 2$	Y'
2	4	6	7	3	6	5	14
1	3	5	7	4	6	5	15

However, Y' = 7s + 5, which cannot be 14 or 15. This case does not occur

Finally, if $\varepsilon(t) \geq 4$, then we find j such that $2\nu_1 - 2 \geq 2j(\nu_1 - j)$. Then j = 1 or $j = \nu_1 - 1$, contradiction.

(ii) Assume that $t_{\nu_1-1}=2$.

If $\varepsilon(t)=3$, then we find j such that $\widetilde{\mathcal{Z}}-2(\nu_1-1)=3\nu_1-5=j(\nu_1-j)$. Thus

$$j+3+\frac{4}{j-3}=\nu_1.$$

From this we obtain the next table: By $Y' = s\nu_1 + 5$, we conclude that $27 = s\nu_1 + 5$, $\nu_1 = 11, 2 = 2$. Hence, the type becomes $[22 * 22; 11^6, 10^2, 7]$.

If $\varepsilon(t) \geq 4$, then we find j such that $3\nu_1 - 5 \geq 2j(\nu_1 - j)$. Thus

$$2j^2 - 5 \ge (2j - 3)\nu_1 \ge 2(2j - 3)j$$
.

Table 31

j-3	j	j+3	ν_1	$\nu_1 - j$	$\nu_1 - 1$	Y'
4	7	10	11	4	10	24
2	5	8	10	5	9	23
1	4	7	11	7	10	27

Hence,

$$0 \ge 2j^2 - 6j + 5$$
.

Then j < 2, a contradiction.

(iii) Assume that $t_{\nu_1-1}=3$.

If $\varepsilon(t) = 4$, then we find j such that $\widetilde{\mathcal{Z}} - 3(\nu_1 - 1) = 2\nu_1 - 4 = j(\nu_1 - j)$. Then j = 2.

Hence, (a) $t_{\nu_1-2} = 1$ or (b) $t_2 = 1$.

In the case (a), we get $Y' = 3(\nu_1 - 1) + \nu_1 - 2$ and $Y' = s\nu_1 + 5$. Hence, $s\nu_1 + 5 = 4\nu_1 - 5$. In other words,

$$10 = (4 - s)\nu_1$$
.

Hence, either 1) $\nu_1 = 10$, s = 3, or 2) $\nu_1 = 5$, s = 2.

In case 1), the type becomes $[20 * 20; 10^5, 9^3, 8]$.

Moreover, in case 2), the type becomes $[10 * 10; 5^6, 4^3, 3]$.

In the case (b), we get $Y' = 3(\nu_1 - 1) + 2$ and $Y' = s\nu_1 + 5$. Hence, $s\nu_1 + 5 = 3\nu_1 - 1$. In other words, $6 = (3 - s)\nu_1$. Thus, s = 2 and $\nu_1 = 6$. The type becomes $[12 * 12; 6^6, 5^3, 2]$.

If $\varepsilon(t) \geq 5$, then we find j such that $2\nu_1 - 4 \geq 2j(\nu_1 - j)$. Then $j^2 - 2 \geq (j-1)\nu_1 \geq 2j^2 - 2j$. Hence,

$$0 \ge j^2 - 2j + 2.$$

Thus, j < 2, a contradiction.

(iv) Assume that $t_{\nu_1-1}=4$.

If $\varepsilon(t) = 5$, then we find j such that $\widetilde{\mathcal{Z}} - 4(\nu_1 - 1) = \nu_1 - 3$. In this case, it is easy to derive a contradiction.

(v) Assume that $t_{\nu_1-1} = 0, t_{\nu_1-2} = 1$. Then

$$\widetilde{\mathcal{Z}} - 2(\nu_1 - 2) = 3\nu_1 - 3.$$

If $\varepsilon(t) = 2$, then we find j such that $3\nu_1 - 3 = j(\nu_1 - j)$. Thus

$$j+3+\frac{6}{j-3}=\nu_1.$$

From this we obtain the next table: By $Y' = s\nu_1 + 5$, we conclude that this case does not happen.

Table 32

j-3	j	j+3	ν_1	$\nu_1 - j$	$\nu_1 - 2$	Y'
6	9	12	13	4	11	15
3	6	9	11	5	9	14
2	5	8	11	6	9	15
1	4	7	13	9	11	20

If $\varepsilon(t) \geq 3$, then we find j such that $3\nu_1 - 3 \geq 2j(\nu_1 - j)$. Thus

$$2j^2 - 3 \ge (2j - 3)\nu_1 \ge 4j^2 - 6j$$
.

Then j < 3.

(vi) Assume that $t_{\nu_1-1} = 0, t_{\nu_1-2} = 2$. Then

$$\widetilde{\mathcal{Z}} - 4(\nu_1 - 2) = \nu_1 + 1.$$

If $\varepsilon(t) = 3$, then we find j such that $\nu_1 + 1 = j(\nu_1 - j)$. Thus

$$j+1+\frac{2}{j-1}=\nu_1.$$

14.8.4. case in which $\omega = 4$ and g = 1.

(2) $\overline{g} = 0$. Then $\omega_1 = 4$ and

$$\widetilde{\mathcal{Z}} = 4\nu_1 - 4$$
.

(i) First assume that $t_{\nu_1-1}=1$.

If $\varepsilon(t) = 2$, then we find j such that $\widetilde{\mathcal{Z}} - (\nu_1 - 1) = 3\nu_1 - 3 = j(\nu_1 - j)$. Thus

$$j + 3 + \frac{6}{j - 3} = \nu_1.$$

From this we obtain the next table: By $Y' = s\nu_1 + 4$, we conclude that

Table 33

j-3	j	j+3	ν_1	$\nu_1 - j$	$\nu_1 - 1$	Y'
6	9	12	13	4	12	16
3	6	9	11	5	10	15
2	5	8	11	6	10	16
1	4	7	13	9	12	21

s = 1 and $\nu_1 = 11$. Hence, the type becomes $[22 * 22; 11^7, 10, 5]$.

If $\varepsilon(t) \geq 3$, then we find j such that $3\nu_1 - 3 \geq 2j(\nu_1 - j)$. Then j = 2. In this case,

$$\widetilde{\mathcal{Z}} - (\nu_1 - 1) - 2(\nu_1 - 2) = \nu_1 + 1 \ge 2(\nu_1 - 2).$$

Hence, $\nu_1 = 4, 5$.

If $\nu_1 = 5$ then s = 1 and the type is $[10 * 10; 5^7, 4, 3, 2]$.

If $\nu_1 = 4$ then s = 1 and then $\widetilde{\mathcal{Z}} - (\nu_1 - 1) - 2(\nu_1 - 2) = \nu_1 + 1 = 5 = 4t_2$, a contradiction.

(ii) Assume that $t_{\nu_1-1}=2$.

If $\varepsilon(t) = 3$, then we find j such that $\widetilde{\mathcal{Z}} - 2(\nu_1 - 1) = 2\nu_1 - 2 = j(\nu_1 - j)$. Thus $j^2 - 2 = (j - 1)\nu_1$. Hence, if j > 2 then

$$j+2+\frac{2}{j-2}=\nu_1.$$

From this we obtain the next table: By Y' = 7s + 4, we arrive at a

Table 34

contradiction.

(iii) Assume that $t_{\nu_1-1}=3$.

If $\varepsilon(t) = 4$, then we find j such that $\widetilde{\mathcal{Z}} - 3(\nu_1 - 1) = \nu_1 - 1 = j(\nu_1 - j)$. Thus $j^2 - 1 = (j - 1)\nu_1$. Hence, j = 1 or $j = \nu_1 - 1$.

(iv) Assume that $t_{\nu_1-1}=4$.

If $\varepsilon(t) = 4$, then we find j such that $\widetilde{Z} - 4(\nu_1 - 1) = 0$. Thus $Y' = 4(\nu_1 - 1)$. Hence, $Y' = s\nu_1 + 4 = 4(\nu_1 - 1)$. Therefore, $8 = (4 - s)\nu_1$, which implies that 1) $\nu_1 = 8, s = 3$ or $2)\nu_1 = 4, s = 2$.

In case 1), the type becomes $[16 * 16; 8^5, 7^4]$.

While,in case 2), the type becomes $[8 * 8; 4^6, 3^4]$.

(v) Assume that $t_{\nu_1-1} = 0, t_{\nu_1-2} = 1$.

If $\varepsilon(t) = 2$, then we find j > 2 such that $\widetilde{\mathcal{Z}} - 2(\nu_1 - 2) = 2\nu_1 = j(\nu_1 - j)$. Thus $j^2 - 4 + 4 = (j - 1)\nu_1$. Hence,

$$j + 2 + \frac{4}{j-2} = \nu_1.$$

From this we obtain the next table: By $Y' = s\nu_1 + 4$, we conclude that

Table 35

j-2	j	j+2	ν_1	$\nu_1 - j$	$\nu_1 - 2$	Y'
4	6	8	9	3	7	10
2	4	6	8	4	6	10
1	3	5	9	6	7	13

 $s = 1, \nu_9, j = 3$. The type becomes $[18 * 18; 9^7, 7, 6]$.

If $\varepsilon(t) \geq 3$, then we find j > 2 such that $\widetilde{\mathcal{Z}} - 2(\nu_1 - 2) = 2\nu_1 \geq 2j(\nu_1 - j)$.

(vi) Assume that $t_{\nu_1-1}=0, t_{\nu_1-2}=2$.

If $\varepsilon(t)=2$, then we find j>2 such that $\widetilde{\mathcal{Z}}-2\cdot 2(\nu_1-2)=4\geq 3(\nu_1-3)$. Hence, $\nu_1=4$. Then $t_3=0,t_2=2$. Thus, Y'=4. But $Y'=4s+4\geq 8$, a contradiction.

14.8.5. case in which $\omega = 4$ and g > 0.

(3) $\overline{g} = 1$. Then $\omega_1 = 3$ and

$$\widetilde{\mathcal{Z}} = 3\nu_1 - 1.$$

(i) First assume that $t_{\nu_1-1}=1$.

If $\varepsilon(t) = 2$, then we find j such that $\widetilde{\mathcal{Z}} - (\nu_1 - 1) = 2\nu_1 = j(\nu_1 - j)$. Thus j > 2 and then

$$j+2+\frac{4}{j-2}=\nu_1.$$

From this we obtain the next table: By $Y' = s\nu_1 + 3$, we conclude that

Table 36

j - 2	j	j+2	ν_1	$\nu_1 - j$	$\nu_1 - 1$	Y'
4	6	8	9	3	8	11
2	4	6	8	4	7	11
1	3	5	9	6	8	14

s = 1 and $\nu_1 = 8$. Hence, the type becomes $[16 * 16; 8^7, 7, 4]$.

If $\varepsilon(t) \geq 3$, then we find j such that $2\nu_1 \geq 2j(\nu_1 - j)$. Then j < 2, a contradiction.

(ii) Assume that $t_{\nu_1-1}=2$.

If $\varepsilon(t) = 3$, then we find j such that $\widetilde{\mathcal{Z}} - 2(\nu_1 - 1) = \nu_1 + 1 = j(\nu_1 - j)$. Thus if j > 2 then

$$j + 1 + \frac{2}{j-1} = \nu_1.$$

From this we obtain the next table: Then $Y' = s\nu_1 + 3 = 5s + 3 \neq 10, 11$,

Table 37

a contradiction.

If $\varepsilon(t) > 3$, then we find j such that $\nu_1 + 1 \ge 2j(\nu_1 - j)$, a contradiction.

(iii) Assume that $t_{\nu_1-1}=3$.

If $\varepsilon(t) = 4$, then we find j such that $\widetilde{\mathcal{Z}} - 3(\nu_1 - 1) = 2 = j(\nu_1 - j)$. This case does not occur.

(iv) Assume that $t_{\nu_1-1} = 0, t_{\nu_1-2} = 1$.

If $\varepsilon(t)=2$, then we find j such that $\widetilde{\mathcal{Z}}-2(\nu_1-2)=\nu_1+3=j(\nu_1-j)$. Thus

 $j+1+\frac{4}{j-1}=\nu_1.$

From this we obtain the next table: Then $Y' = s\nu_1 + 3$; hence, $\nu_1 = 7$

Table 38

j-1	j	j+1	ν_1	$\nu_1 - j$	$\nu_1 - 2$	Y'
4	5	6	7	2	5	7
2	3	4	6	3	4	7
1	2	3	7	5	5	10

and j=2.

The type becomes $[14 * 14; 7^7, 5^2]$.

If $\varepsilon(t) > 2$, then we find j such that $\nu_1 + 3 \ge 2j(\nu_1 - j)$. Hence, j < 2, a contradiction.

(4) $\overline{g} = 2$. Then $\omega_1 = 2$ and

$$\widetilde{\mathcal{Z}} = 2\nu_1 + 2.$$

(i) First assume that $t_{\nu_1-1}=1$.

If $\varepsilon(t) = 2$, then we find j such that $\widetilde{\mathcal{Z}} - (\nu_1 - 1) = \nu_1 + 3 = j(\nu_1 - j)$. Thus

$$j + 1 + \frac{4}{j - 1} = \nu_1.$$

From this we obtain the next table: By $Y' = s\nu_1 + 2$, we conclude that

Table 39

j - 2	j	j+2	ν_1	ν_1 – j	$\nu_1 - 1$	Y'
4	5	6	7	2	6	8
2	3	4	6	3	5	8
1	2	3	7	5	6	11

s = 1 and $\nu_1 = 6$. Hence, the type becomes $[12 * 12; 6^7, 5, 3]$.

(ii) Assume that $t_{\nu_1-1}=2$.

If $\varepsilon(t) \geq 2$, then we find j such that $\widetilde{\mathcal{Z}} - 2(\nu_1 - 1) = 4 \geq 2\nu_1 - 4$. Thus $\nu_1 = 4$.

Hence, $\widetilde{\mathcal{Z}} = 10 = 3t_3 + 4t_2$. Thus, $t_3 = 2, t_2 = 1$ and so Y' = 6 + 2 = 8. Since Y' = 4s + 2, we derive a contradiction.

(5) $\overline{g} = 3$. Then $\omega_1 = 1$ and

$$\widetilde{\mathcal{Z}} = \nu_1 + 5$$
.

(i) First assume that $t_{\nu_1-1}=1$.

If $\varepsilon(t) \geq 2$, then we find j such that $\widetilde{\mathcal{Z}} - (\nu_1 - 1) = 6 \geq 2(\nu_1 - 4)$. Thus $\nu_1 = 4$ or 5. Moreover, in the other cases, $\nu_1 \leq 5$ is verified.

Therefore, we have two cases:

(i) $\nu_1 = 4$. Then

$$\widetilde{\mathcal{Z}} = \nu_1 + 5 = 9 = 3t_3 + 4t_2.$$

We have a solution: $t_3 = 3$, $t_2 = 0$. Hence, Y' = 9 and Y' = 4s + 1 = 9. Therefore, s = 2 and the type becomes $[8 * 8; 4^6, 3^3]$.

(ii) $\nu_1 = 5$. Then

$$\widetilde{\mathcal{Z}} = \nu_1 + 5 = 10 = 4t_4 + 6(t_3 + t_2).$$

 $t_4 = 1, t_3 + t_2 = 1$. Hence, Y' = 6 or 7. By Y' = 5s + 1, we conclude that s=1 and $t_2=1$. Therefore, the type becomes $[10*10;5^7,4,2]$.

(6) $\overline{g} = 4$. Then $\omega_1 = 0$ and

$$\widetilde{\mathcal{Z}} = 8$$
.

From this we obtain the next table: By $Y' = s\nu_1 + 2$, we conclude that

Table 40

j - 2	j	j+2	ν_1	$\nu_1 - j$	$\nu_1 - 1$	Y'
$\overline{}$	5	6	7	2	6	8
2	3	4	6	3	5	8
1	2	3	7	5	6	11

s = 1 and $\nu_1 = 6$. Hence, the type becomes $[12 * 12; 6^7, 5, 3]$.

15. SHARP ESTIMATE

Here we shall show the following result. Suppose that $\sigma \geq 7$.

(1) $\sigma \leq (\omega + 1)(\omega + 2)$. Theorem 8.

- (2) If $\sigma = (\omega + 1)(\omega + 2)$ then the type is $[2\nu_1 * 2\nu_1; \nu_1^7, \nu_1 1, \nu_r]$, where
- $\nu_1 = \frac{\nu_r(\nu_r 1)}{2} \text{ and } \omega = \nu_r 2.$ (3) If $\sigma < (\omega + 1)(\omega + 2)$ then $\sigma \le \omega(\omega + 1) + 2$ except for the following cases:
 - (a) $(\omega = 2)$, $[10 * 11; 5^9]$;
 - (b) $(\omega = 3)$, [15 * 22, 1; 79] and $[16 * 16; 8^6, 7^2, 6]$;
- (4) If $\sigma < \omega(\omega + 1) + 2$ then $\sigma \le \omega(\omega 1) + 4$ except for the following

(a)
$$(\omega = 3, g = 1), [12 * 12; 6^6, 5];$$

- (b) $(\omega = 4, g = 1), [18 * 18; 9^7, 7, 6]$:
- (c) $(\omega = 4, g = 0), [19 * 19; 9^9];$
- (d) $(\omega = 4q = 0)$, $[20 * 20; 10^5, 9^3, 8]$.

Theorem 9. (1) $\sigma \leq (\alpha + 3)(\alpha + 2)$ (By O.Matsuda);

- (2) If $\sigma = (\alpha + 3)(\alpha + 2)$ then the type is $[2\nu_1 * 2\nu_1; \nu_1^7, \nu_1 1, \nu_r]$, where $\nu_1 = \frac{\nu_r(\nu_r - 1)}{2} \text{ and } \omega = \nu_r - 2.$ (3) $\sigma \le \alpha^2 + (1 - 4\overline{g})\alpha + 4\overline{g}^2 + 2;$
- (4) If g > 0 then $\sigma \le \alpha(\alpha + 1) + 2$;
- (5) If $\sigma < (\alpha + 3)(\alpha + 2)$ then $\sigma \le \alpha(\alpha + 1) + 2$, except for the following cases:
 - (a) $(\alpha = 1)$, $[10 * 11; 5^9]$;

 - (a) $(\alpha = 1)$, [16*11, 6], $[6*16; 8^6, 7^2, 6]$; (b) $(\alpha = 2)$, $[15*22, 1; 7^9]$, $[16*16; 8^6, 7^2, 6]$; (c) $(\alpha = 3)$, $[19*19; 9^9]$, $[19*38, 2; 9^9]$, $[20*20; 10^5, 9^3, 8]$, [22* $22;11^6,10^2,7], [22*22;11^7,8^2];$
 - (d) $(\alpha = 4)$, $[23*35, 1; 11^9]$, $[24*24; 12^4, 11^4, 10]$, $[24*25; 12^7, 10^2]$, $[25 * 37, 1; 12^8, 9], [28 * 29; 14^8, 8], [30 * 30; 15^7, 13, 8];$
 - (e) $(\alpha = 5)$, $[36 * 37; 18^8, 9]$, $[38 * 38; 19^7, 17, 9]$;
 - (f) $(\alpha = 6), [46 * 46; 23^6, 22^2, 10].$

Proof. By Theorem 6, we can assume that g = 0. Hence, $\omega_1 = \omega + 1$. In particular, $D^2 < 0$.

15.1. **case in which** $B \geq 3$. (1) If $B \geq 3$ and $D^2 \leq 0$, then $\sigma \leq \frac{4\omega}{3} + 3$. Hence, by $\sigma \geq 8$, we get $8 \leq \frac{4\omega}{3} + 3$ and so $\omega \geq \frac{15}{4}$; hence $\omega \geq 4$. Further, by

$$(\omega - 1)\omega - (\frac{4\omega}{3} + 3) = \frac{\omega(3\omega - 7)}{3} - 3$$

$$\geq \frac{4(3 \times 4 - 7)}{3}$$

$$\geq 2$$

we obtain

$$(\omega - 1)\omega > \sigma$$
.

(2) We assume that B < 2. By the fundamental equalities, we obtain

$$\widetilde{\mathcal{Z}} = -\lambda \nu_1 - \omega_1 + 2\overline{g} - \widetilde{k} \ge 0.$$

Hence, thanks to q = 0, we get

$$\lambda \nu_1 \leq -\omega_1 + 2\overline{g} - \tilde{k} \leq -\omega_1 - 3 \leq -6.$$

Thus

$$\lambda = k - \omega_1 < 0.$$

15.2. case in which $\lambda < 0$ and $p \ge 1$.

First, we recall $\lambda < 0$.

If p > 1, then recalling the inequality (15), we get

$$\sigma \le \frac{\omega_1^2 + 9\omega_1 - 2}{3}.\tag{30}$$

We wish to prove the inequality

$$\omega(\omega - 1) + 2 = (\omega_1 - 1)(\omega_1 - 2) + 2 \ge \sigma.$$

Then

$$(\omega_1 - 1)(\omega_1 - 2) + 2 - (\frac{\omega_1^2 + 9\omega_1 - 2}{3}) = \frac{2\omega_1(\omega_1 - 9) + 14}{3}.$$

If $\omega_1 = 8$, then the right hand side turns out to be $-\frac{2}{3}$. Thus, when $\omega_1 \geq 8$ the inequality is verified.

To study the case when $\omega_1 < 8$, we recall the fundamental equalities:

•
$$X = 8\nu_1^2 + 2k\nu_1 + \tilde{k} + \omega_1 - 2\overline{g},$$

• $Y = 8\nu_1 + k + \omega_1.$

•
$$Y = 8\nu_1 + k + \omega_1$$

Here $\tilde{k} = p(k-2p)$.

By using Lemma of Tanaka and Matsuda, we get

$$V = 8\nu_1^2 + (k + \omega_1)^2 - X \ge 0.$$

Thus

$$k + 2\omega_1 + \frac{\omega_1(\omega_1 - 1) - \tilde{k} + pk - 2}{k} \ge \sigma,$$

and so

$$k + 2\omega_1 + \frac{\omega_1(\omega_1 - 1) + 2p^2 - 2}{k} \ge \sigma,$$

The integral part of the left hand side is denoted by $W(\omega_1, k)$.

In that follows, we shall check the inequality by distinguishing the following cases according to the value of $\omega_1 \leq 7$.

15.2.1. case in which $\omega_1 = 7$.

By
$$\lambda = k - \omega_1 = k - 7 < 0$$
, we have $k \le 6$.

It is easy to see that if p = 1, then W(7,3) = 31, W(7,4) = 28, W(7,5) = 3127, W(7,6) = 27.

If
$$p = 2$$
, then $W(7,6) = 28$, $W(7,8) = 28$.

But $\omega(\omega - 1) + 2 = 32$. Hence,

$$\sigma < W(7, k) < 32 = \omega(\omega - 1) + 2.$$

15.2.2. case in which $\omega_1 = 6$.

By
$$\lambda = k - \omega_1 = k - 6 < 0$$
, we have $k < 5$. Then $p = 1$ and

$$W(6,3) = 25, W(6,4) = 23, W(6,5) = 23.$$

We distinguish the following cases according to the value of k.

(1) k = 3. Then p = 1, w = 3, u = 0. Then by the fundamental equalities

•
$$X = 8\nu_1^2 + 2k\nu_1 + \tilde{k} + \omega - 3\overline{g} = 8\nu_1^2 + 6\nu_1 + 1 + 5 + 3$$
,

•
$$Y = 8\nu_1 + k + \omega_1 = 8\nu_1 + 9$$
,

we get

$$\widetilde{\mathcal{Z}} = 3\nu_1 - 9 \ge (3\nu_1 - 9)t_{\nu_1 - 3}.$$

Thus if $t_{\nu_1-3}=1$ then Y becomes $t\nu_1+(\nu_1-3)=(t+1)\nu_1-3$. Combining this with $Y=8\nu_1+9$, we get

$$12 = (t-7)\nu_1$$
.

We have two solutions.

- $\nu_1 = 12, t = 8$. The type becomes $[25 * 37, 1; 12^8, 9]$;
- $\nu_1 = 7, t = 8$. The type becomes $[13 * 19, 1; 6^9, 3]$.

But if $t_{\nu_1-3} = 0$ then $\widetilde{\mathcal{Z}} = \nu_1 - 1$ or $= 2(\nu_1 - 1)$ or $= 2\nu_1 - 4$. In these cases, $\nu_1 \le 7$.

If $\nu_1 = 7$ then $\widetilde{\mathcal{Z}} = 3(\nu_1 - 3) = 12$; hence, $12 = 6t_6 + 10t_5 + 12t_4 + \cdots$. t = 6 = 2; and $Y = \nu_1 t + 12 = 8\nu_1 + 9$. Then $3 = (8 - t)\nu_1 = (8 - t)7$; a contradiction.

If $\nu_1 = 6$ then $\widetilde{\mathcal{Z}} = 3(\nu_1 - 3) = 9$; hence, $9 = 5t_5 + 8t_4 + 9t_3 + \cdots$, which has no solution.

If $\nu_1 = 5$ then $\tilde{\mathcal{Z}} = 6$; hence, $6 = 4t_4 + 6(t_3 + t_2)$. Then $t_3 + t_2 = 1$. By Y = 5t + 3 or 5t + 2. From both we can derive contradictions.

If $\nu_1 = 4$ then $\tilde{\mathcal{Z}} = 3$; hence, $3 = 3t_3 + 4t_2$. Then $t_3 = 1$. By Y = 4t + 3, we get $Y = 8\nu_1 + 9 = 4t + 3$, a contradiction.

- (2) k = 4. Then p = 1, w = 4, u = 0. By the fundamental equalities
 - $X = 8\nu_1^2 + 2k\nu_1 + \tilde{k} + \omega_1 2\overline{g} = 8\nu_1^2 + 8\nu_1 + 2 + 5 + 3$,
 - $Y = 8\nu_1 + k + \omega_1 = 8\nu_1 + 10$,

we get

$$\widetilde{\mathcal{Z}} = 2\nu_1 - 10.$$

Thus $\nu_1 = 5$ and Y becomes $t\nu_1 = 8\nu_1 + 10 = 10\nu_1$. Hence, t = 9 and The type becomes $[10 * 10; 5^{10}]$.

- (3) k = 5. Then p = 1, w = 3, u = 1. Then by the fundamental equalities
 - $X = 8\nu_1^2 + 2k\nu_1 + \tilde{k} + \omega 3\overline{g} = 8\nu_1^2 + 10\nu_1 + 3 + 5 + 3$,
 - $Y = 8\nu_1 + k + \omega_1 = 8\nu_1 + 11$,

we get

$$\widetilde{\mathcal{Z}} = \nu_1 - 11.$$

Thus $\nu_1 = 11$ and Y becomes $t\nu_1 = 8\nu_1 + 11 = 9\nu_1$. Hence, t = 9 and the type becomes $[23 * 35, 1; 11^9]$.

15.2.3. case in which $\omega_1 \leq 5$.

In this case, $\omega = \omega_1 - 1 \le 4$. These cases have already been treated in the former section.

15.3. case in which $\lambda < 0$ and p = 0, u > 0.

If $\lambda = k - \omega_1 < 0$ and p = 0, u > 0 then k = 2u.

The fundamental equalities become

•
$$X = 8\nu_1^2 + 2k\nu_1 + \omega_1 + 2$$
,
• $Y = 8\nu_1 + k + \omega_1$.

•
$$Y = 8\nu_1 + k + \omega_1$$
.

By Lemma of T. and M, we obtain

$$V = (k + \omega_1)^2 - 2k\nu_1 - \omega_1 - 2 \ge 0,$$

and

$$k + 2\omega_1 + \frac{\omega_1^2 - \omega_1 - 2}{k} \ge \sigma. \tag{31}$$

Further,

$$(\omega_1 - 1)(\omega_1 - 2) + 2 - (k + 2\omega_1 + \frac{\omega_1^2 - \omega_1 - 2}{k})$$

= $\omega_1((1 - \frac{1}{k})\omega_1 - 3 + \frac{1}{k}) + 2 + \frac{2}{k} - k$,

which is written as $F(\omega_1)$. As a quadratic function $F(\omega_1)$ is increasing for $\omega_1 > 4$.

$$F(8) = 28 - k - \frac{54}{k} > 0$$
 except for $k = 2$.

But for $\omega_1 = 8, k = 2$, we get

$$k + 2\omega_1 + \frac{\omega_1^2 - \omega_1 - 2}{k} = 45 \ge \sigma.$$

Since $\sigma = 2\nu_1$, it follows that $\nu_1 \leq 22$.

Noting that $(\omega_1 - 1)(\omega_1 - 2) + 2 = 44$ for $\omega_1 = 8$, we conclude that for $\omega_1 \geq 8$

$$(\omega_1 - 1)(\omega_1 - 2) + 2 < \sigma$$
.

15.3.1. case in which $\omega_1 = 7$.

Then we get

$$\widetilde{\mathcal{Z}} = -2u\nu_1 + 7(\nu_1 - 1) - 2 = (7 - 2u)\nu_1 - 9.$$

Hence, $u \leq 3$.

(i) u=3. Then

$$\widetilde{\mathcal{Z}} = \nu_1 - 9.$$

Thus $\nu_1 = 9$ and Y becomes $t\nu_1 = 8\nu_1 + 6 + 7$, a contradiction.

(ii) u=2. Then

$$\widetilde{\mathcal{Z}}=3(\nu_1-3).$$

Thus (a) either $t_{\nu_1-3}=1$ or (b) $\widetilde{\mathcal{Z}}=(\nu_1-1)t_{\nu_1-1}+(2\nu_1-4)t_{\nu_1-2}$. In case (a), Y becomes $t\nu_1 + \nu_1 - 3 = 8\nu_1 + 4 + 7$. Hence, $(t-7)\nu_1 = 14$. Therefore, we have the following three cases:

- $\nu_1 = 14, t = 8$; the type becomes $[28 * 30; 14^8, 11]$.
- $\nu_1 = 7, t = 9$; the type becomes $[14 * 16; 7^9, 4]$.

In case (b), if $t_{\nu_1-1}=1, t_{\nu_1-2}=0$ then $\nu_1=4$. $\widetilde{\mathcal{Z}}=3$ and so $t_3=3$ and $Y=t\nu_1+9$. But $Y=8\nu_1+9$. Hence, t=8 and the type is $[8*9;4^8,3^3]$. If $t_{\nu_1-1}=2$, $t_{\nu_1-2}=0$ then $\nu_1=7$. $\widetilde{\mathcal{Z}}=12=6t_6+10(t_5+t_2)+12(t_4+t_3)$.

(iii) u = 1. Then

$$\widetilde{\mathcal{Z}} = 5\nu_1 - 9.$$

If $t_{\nu_1-1}=0$ then assume $\varepsilon(t)=1$; we will find j such that $5\nu_1-9=$ $j(\nu_1-j)$. Hence,

$$j+5+\frac{16}{j-5}=\nu_1.$$

Then we have the next table.

Table 41

	j - 5	j	j+5	ν_1
1	16	21	26	27
2	8	13	18	20
4	4	9	14	18
8	2	7	12	20
16	1	6	11	27

Then $Y = t\nu_1 + j = 8\nu_1 + 9$; hence, j = 9 and t = 8. The type becomes $[36 * 37; 18^8, 9]$.

If $t_{\nu_1-1} > 1$ then

$$\widetilde{\mathcal{Z}} - (\nu_1 - 1) = 4(\nu_1 - 2).$$

Thus $t_{\nu_1-2}=2$ and Y becomes $t\nu_1+\nu_1-1+2(\nu_1-2)=8\nu_1+9$. Hence, $(t-5)\nu_1=14$. Therefore, we have the following three cases:

- $\nu_1 = 14, t = 6$; the type becomes $[28 * 29; 14^6, 13, 12^2]$.
- $\nu_1 = 7, t = 7$; the type becomes $[14 * 15; 7^7, 6, 5^2]$.

15.3.2. case in which $\omega = 5$. Then by

- $X' = s\nu_1^2 + 8$, $Y' = s\nu_1 + 6$,

we get

$$\widetilde{\mathcal{Z}} = 6\nu_1 - 8.$$

By

$$\sigma \le s + 2\omega_1 + 1 + \frac{\omega_1^2 - \omega_1 + 2\overline{g}}{s} = s + 13 + \frac{28}{s},\tag{32}$$

we get $\sigma = 2\nu_1 \le 28$.

What we wish to prove is the next inequality:

$$\sigma \le \omega^2 - \omega + 2 = 22.$$

Hence we shall study under the hypothesis $\nu_1 = 12, 13, 14$. case in which $\nu_1 = 14$

Table 42. $\nu_1 = 14$

ω_1	$ u_1$	$\nu_1 - 1$	0	0	0	0	0	
6	14	13	12	11	10	9	8	7
0	0	1	2	3	4	5	6	7
0	76	13	24	33	40	45	48	49
0	0	63	52	43	36	31	28	27

The equation

$$\tilde{Z} = 76 = 13x_0 + 24x_1 + 33x_2 + 40x_3 + 45x_4 + 48x_5 + 49x_6$$

has no solution.

case in which $\nu_1 = 13$

Table 43. $\nu_1 = 13$

	ω_1	$ u_1$	$\nu_1 - 1$	0	0	0	0	
,	6	13	12	11	10	9	8	7
	0	0	1	2	3	4	5	6
	0	70	12	22	30	36	40	42
	0	0	58	48	40	34	30	28

The equation

$$\tilde{Z} = 70 = 12x_0 + 22x_1 + 30x_2 + 36x_3 + 40x_4 + 42x_5$$

has a solution $x_0 = 1$, $x_1 = 1$, $x_3 = 1$. Then $t_{12} = 1$, $t_{11} + t_2 = 1$, $t_9 + t_4 = 1$. But Y' = 12 + 11 + 9 = 32, Y' = 13s + 6. Hence, s = 2 and the type is $[26 * 26; 13^6, 12, 11, 9]$.

case in which $\nu_1 = 12$

Table 44. $\nu_1 = 12$

ω_1	ν_1	$\nu_1 - 1$	$\nu_1 - 1$	0	0	0	
6	12	11	10	9	8	7	6
0	0	1	2	3	4	5	6
0	64	11	20	27	32	35	36
0	0	53	44	37	32	29	28

The equation

$$\tilde{Z} = 64 = 11x_0 + 20x_1 + 27x_2 + 32x_3 + 35x_4 + 36x_5$$

has a solution $x_0 = 4, x_1 = 1$.

But Y' = 44 + 10, Y' = 12s + 6. Hence, s = 4 and the type is [24 * $24; 12^4, 11^4, 10$].

In the case when $\omega \leq 4$, we have already done it.

15.4. case in which $\lambda < 0$ and k = 0.

(5) Supposing k=0 and $\lambda=-\omega_1<0$, we shall verify the result. We distinguish the following cases according to the value of t_{ν_1-1} .

15.5. case in which $t_{\nu_1-1} = 0$.

$$(5-1)$$
 $t_{\nu_1-1}=0$.

By the fundamental equalities, we get

•
$$Y' = s\nu_1 + \omega_1 = s\nu_1 + \omega + 1 = s(\nu_1 - 2) + 2s + \omega + 1,$$

• $X' = s\nu_1^2 + \omega_1 - 2\overline{g} = s\nu_1^2 + \omega + 3.$

•
$$X' = s\nu_1^2 + \omega_1 - 2\overline{q} = s\nu_1^2 + \omega + 3$$
.

Then

$$\widetilde{\mathcal{Z}} = \nu_1(\omega + 1) - \omega - 3 \tag{33}$$

and by $Y' = s\nu_1 + \omega_1 = s\nu_1 + \omega + 1$, there exist at least s+1 multiplicities ν_j with $\nu_j < \nu_1$. Hence,

$$\widetilde{\mathcal{Z}} = \nu_1(\omega + 1) - \omega - 3 \ge 2(s+1)(\nu_1 - 2).$$
 (34)

Lemma of Tanaka and Matsuda implies

$$V = s(\nu_1 - 2)^2 + (2s + \omega + 1)^2 - (s\nu_1^2 + \omega + 3) \ge 0.$$

By $\sigma = 2\nu_1$, we obtain

$$2s + 2\omega + 4 + \frac{\omega^2 + \omega - 2}{2s} \ge \sigma. \tag{35}$$

The following inequality is what we have to prove.

$$\omega(\omega - 1) + 2 \ge \sigma. \tag{36}$$

Subtracting the left hand side of (31) from that of (30), we get

$$\omega(\omega-1) + 2 - (2s + 2\omega + 4 + \frac{\omega^2 + \omega - 2}{2s}),$$

which is written as $F(\omega)$. We shall show that $F(\omega) > 0$ for $\omega \geq 8$. Indeed, Then $F(8) \ge 1$ for $1 \ge s \ge 7$.

But
$$F(7) = -3$$
 for $s = 1$.

Table 45

$ u_1$	$\nu_1 - 1$										
23	22	21	20	19	18	17	16	15	14	13	12
	1	2	3	4	5	6	7	8	9	10	11
	22	42	60	76	90	102	112	120	126	130	132
		132	114	98	84	72	62	54	48	44	42

15.5.1. case in which $\omega = 7$.

Assume $\omega = 7$. Then, $\omega_1 = 8$.

When $\nu_1 = 23$, we have $\tilde{Z} = 8\nu_1 - 1 = 173$ and the following table.

The next equation

$$\tilde{Z} = 174 = 42x_1 + 60x_2 + 76x_3 + 90x_4 + 102x_5 + 112x_6 + 120x_7 + 126x_8 + 130x_9 + 132x_{10}$$
 has no solution.

15.5.2. case in which $\omega = 6$.

15.5.3. case in which $\omega = 5$.

Put $x_1 = t_{\nu_1-2} + t_2, x_2 = t_{\nu_1-3} + t_3, \cdots$.

In general, if $\nu > 2j$ then put $x_{j-1} = t_{\nu_1-j} + t_j$, and if $\nu = 2j$ then $x_{j-1} = t_j$.

Moreover, put $x_0 = t_{\nu_1 - 1}$.

Then we have

$$\widetilde{\mathcal{Z}} = 6\nu_1 - 8 = (\nu_1 - 1)x_0 + 2(\nu_1 - 2)x_1 + 3(\nu_1 - 3)x_3 + \cdots$$

Under the hypothesis $x_0 = t_{\nu_1 - 1} = 0$, we shall distinguish the various cases:

(i) $x_1 = 1$. Then

$$\widetilde{\mathcal{Z}}' = \widetilde{\mathcal{Z}} - 2(\nu_1 - 2) = 4(\nu_1 - 1).$$

(a) Suppose that $\varepsilon(t) = 2$. Then for some j > 2, $4(\nu_1 - 1) = j(\nu_1 - j)$.

$$j^2 - 16 + 12 = (j - 4)\nu_1,$$

and so

$$j + 4 + \frac{12}{j - 4} = \nu_1$$

From this we obtain the next table:

Therefore, $x_1 = t_{\nu_1 - 2} + t_2 = 1$, $x_j = t_{\nu_1 - j} + t_j = 1$. Moreover, $Y' = s\nu_1 + 6$. Thus, we conclude that s = 1 and $\nu_1 = 15$, $t_{13} = t_7 = 1$.

Therefore, the type becomes $[30 * 30; 15^7, 13, 7]$.

Except for the above type, the next inequality is satisfied.

Table 46

j-4	j	j+4	ν_1	$\nu_1 - 1$	$\nu_1 - j$
12	16	20	21	20	9
6	10	14	16	15	10
4	8	12	15	14	11
3	7	11	15	14	12
2	6	10	16	15	14
1	5	9	21	20	20

$$\omega(\omega-1)+2>\sigma$$
.

Suppose that $\varepsilon(t) \geq 3$. Then there exists j > 2 such that $4(\nu_1 - 1) \geq 2j(\nu_1 - j)$. Then

$$2(\nu_1 - 1) \ge j(\nu_1 - j)$$

and so since $\nu_1 \geq 2j$, it follows that

$$j^2 - 2 \ge (j-2)\nu_1 \ge 2j^2 - 4j$$
.

Hence,

$$0 \ge j^2 - 4j + 2 = (j-2)^2 - 2.$$

Thus j = 3. Therefore, may assume $x_2 = 1$. Hence,

$$\widetilde{\mathcal{Z}}' = \widetilde{\mathcal{Z}} - 2(\nu_1 - 2) - 3(\nu_1 - 3) = \nu_1 + 5.$$

Then there exists j > 2 such that $\nu_1 + 5 = j(\nu_1 - j)$. Hence,

$$j^2 - 1 + 6 = (j - 1)\nu_1 \ge 2j(j - 1).$$

Thus,

$$5 \ge j^2 - 2j = (j-1)^2 - 1.$$

Hence, j=3 which implies $x_2=2$. Furthermore, $\nu_1=7$. By $x_1=1, x_2=2$, we have $1=t_5+t_2, 2=t_4+t_3$. But $Y'=s\nu_1+6=7s+6$. Therefore, $t_5=1, t_4=2, s=1$. The type becomes $[14*14; 7^7, 5, 4^2]$.

(ii) $x_1 = 2$. Then

$$\widetilde{\mathcal{Z}}' = \widetilde{\mathcal{Z}} - 2 \cdot 2(\nu_1 - 2) = 2\nu_1$$

(a) Suppose that $\varepsilon(t) = 2$. Then for some j > 2, $2\nu_1 = j(\nu_1 - j)$. $j^2 - 4 + 4 = (j-2)\nu_1$,

and so

$$j + 2 + \frac{4}{j - 2} = \nu_1$$

From this we obtain the next table:

Table 47

j-2	j	j+2	ν_1	$\nu_1 - 1$	$\nu_1 - j$
$\overline{}$	6	8	9	8	5
2	4	6	8	7	6
1	3	5	9	8	8

Therefore, if $\nu_1 = 9$ then Y' = 9s + 6. By $2 = t_7 + t_2 = 2$, $t_6 = 1$, we get $t_7 = 1, t_2 = 1, t_6 = 1, s = 1.$

The type becomes $[18 * 18; 9^7, 7, 6, 2]$.

(b)

It is not hard to derive a contradiction from $\varepsilon(t) > 2$.

(iii) $x_1 \geq 3$. Then

$$\widetilde{\mathcal{Z}}' = \widetilde{\mathcal{Z}} - 3 \cdot 2(\nu_1 - 2) \le 4.$$

Suppose that $\varepsilon(t) \geq 2$. Then for some j > 2, $4 \geq 3(\nu_1 - 3)$.

Hence, $\nu_1 = 4$.

In general, when $\nu_1 = 4$, one has $\widetilde{\mathcal{Z}} = 16 = 3t_3 + 4t_2$. Thus, $t_2 = 4$ and Y' = 8, Y' = 4s + 6, a contradiction.

15.5.4. case in which $\omega \leq 4$.

This case has alreasely been treated in the former sections.

15.6. case in which $t_{\nu_1-1} > 0$ and $s \ge 2$. (5-2) $t_{\nu_1-1} > 0, s \ge 2$.

$$(5-2) \ t_{\nu_1-1} > 0, s \ge 2.$$

Then by the fundamental equalities, we get

- $Y' = s\nu_1 + \omega_1 = s\nu_1 + \omega_1 = s(\nu_1 1) + s + \omega_1,$ $X' = s\nu_1^2 + \omega_1 2\overline{g}.$

Then Lemma of Tanaka and Matsuda implies

$$V = s(\nu_1 - 1)^2 + (s + \omega_1)^2 - (s\nu_1^2 + \omega_1 - 2\overline{g}) \ge 0.$$

By $\sigma = 2\nu_1$, we obtain

$$s + 2\omega_1 + 1 + \frac{\omega_1^2 - \omega_1 + 2\overline{g}}{s} \ge \sigma. \tag{37}$$

Recalling that q = 0, we get

$$s + 2\omega + 3 + \frac{\omega^2 + \omega - 2}{s} \ge \sigma. \tag{38}$$

The following inequality is what we have to prove.

$$\omega(\omega - 1) + 2 > \sigma. \tag{39}$$

Hence, defining F(x) to be $x(x-1) + 2 - (s + 2x + 3 + \frac{x^2 + x - 2}{s})$, we investigate the value $F(\omega)$.

Then
$$F(8) = 58 - (s + 19 + \frac{70}{s}) > 0$$
 and

Then
$$F(8) = 58 - (s + 19 + \frac{70}{s}) > 0$$
 and if $F(7) = 44 - (s + 17 + \frac{54}{s}) < 0$ then $s = 2$ and $s + 17 + \frac{54}{s} = 46$.

15.6.1. case in which $\omega = 7$. Assume $\omega = 7$. Then, $\omega_1 = 8$.

When $\nu_1 = 23$, we have $\tilde{Z} = 8\nu_1 - 1 = 173$ and the following table.

Table 48

ν_1	$\nu_1 - 1$										
$\overline{23}$	22	21	20	19	18	17	16	15	14	13	12
	1	2	3	4	5	6	7	8	9	10	11
	22	42	60	76	90	102	112	120	126	130	132
		132	114	98	84	72	62	54	48	44	42

The next equation

$$\tilde{Z} = 174 = 22x_0 + 42x_1 + 60x_2 + 76x_3 + 90x_4 + 102x_5 + 112x_6 + 120x_7 + 126x_8 + 130x_9 + 132x_{10}$$

has solution $x_0 = 2$, $x_{12} = 1$. Hence, $t_{22} = 2$ and $t_{13} + t_{10} = 1$.

$$Y' = 44 + 13$$
 or $44 + 10$. But $Y' = 23s + 8$. Hence, $s = 2$ and $Y' = 54$.

Thus the type becomes $[46 * 46; 23^6, 22^2, 10]$.

15.6.2. case in which $\omega = 6$.

Assume $\omega = 6$. Then, $\omega_1 = 7$. When $\nu_1 = 18$, we have $\tilde{Z} = 117$ and the following table.

Table 49

ν_1	$\nu_1 - 1$								
18	17	16	15	14	13	12	11	10	9
0	1	2	3	4	5	6	7	8	9
	17	32	45	56	65	72	77	80	81
	100	85	72	61	52	45	40	37	36

The equation

$$\tilde{Z} = 117 = 17x_0 + 32x_1 + 45x_2 + 56x_3 + 65x_4 + 72x_5 + 77x_6 + 80x_7 + 81x_8$$

has a solution $x_2 = x_5 = 1$. Hence, $t_{15} + t_3 = 1$ and $t_{12} + t_6 = 1$. Thus $Y' = 15 + 12$ or $15 + 6$ or $2 + 12$ or $2 + 6$. By $Y' = 18x_4 + 7$, we have a

Y' = 15 + 12 or 15 + 6 or 3 + 12 or 3 + 6. By Y' = 18s + 7, we have a contradiction.

When $\nu_1 = 17$, we have $\tilde{Z} = 110$ and the following table.

Table 50.
$$\nu_1 = 17$$

The equation

$$\tilde{Z} = 110 = 16x_0 + 30x_1 + 42x_2 + 52x_3 + 60x_4 + 66x_5 + 70x_6 + 82x_7$$

has no solution.

Therefore, when $\omega = 6$, we get $\sigma \le \omega^2 - \omega + 2 = 32$ and $\nu_1 \le 16$.

15.7. case in which $t_{\nu_1-1} > 0$ and s = 1.

$$(5 - 3)$$

Then t = 8 - s = 7 and if r = t + 2 = 9 then

- $Y' = \nu_1 1 + \nu_r$,
- $X' = (\nu_1 1)^2 + \nu_r^2$.

Thus.

- $Y' = s\nu_1 + \omega_1 = \nu_1 1 + \omega + 2$, $X' = s\nu_1^2 + \omega_1 2\overline{g} = \nu_1^2 + \omega + 3$.

Hence.

$$V = (\nu_1 - 1)^2 + (\omega + 2)^2 - X' = 0.$$

From this, $\nu_r = \omega + 2$ and by g = 0 we get $\nu_1 = \frac{\nu_r(\nu_r - 1)}{2}$ and so

$$\sigma = (\omega + 1)(\omega + 2),$$

which contradicts the hypothesis.

15.8. case in which r = t + 2 > 9.

Further, suppose that r = t + 2 > 9. Let the multiplicities of C be denoted by ν_1^t (, which means that there are t multiple points of multiplicity ν_1), $\nu_1 - 1, \varepsilon_1, \varepsilon_2, \cdots$. Then

- $Y' = \nu_1 1 + \varepsilon_1 + \varepsilon_2 + \dots = s\nu_1 + \omega_1,$ $X' = (\nu_1 1)^2 + \varepsilon_1^2 + \varepsilon_2^2 + \dots = s\nu_1^2 + \omega_1 2\overline{g}.$

Putting

$$\varepsilon_2' = \varepsilon_2 + \cdots, \varepsilon_2'' = \varepsilon_2^2 + \cdots \ge {\varepsilon_2'}^2,$$

we get

- $Y' = \nu_1 1 + \varepsilon_1 + \varepsilon_2' = s\nu_1 + \omega_1,$ $X' = (\nu_1 1)^2 + \varepsilon_1^2 + \varepsilon_2'' = s\nu_1^2 + \omega_1 2\overline{g}.$

Then since s=1 and $\overline{g}=-1$, it follows that

•
$$\varepsilon_1 + \varepsilon_2' = \omega + 2$$
,

$$\bullet \ \varepsilon_1^2 + \varepsilon_2'' = 2\nu_1 + \omega + 2.$$

and so

$$2\varepsilon_1 \varepsilon_2' = (\varepsilon_1 + \varepsilon_2')^2 - \varepsilon_1^2 - {\varepsilon_2'}^2$$

$$\leq (\varepsilon_1 + \varepsilon_2')^2 - \varepsilon_1^2 - {\varepsilon_2''}^2$$

$$\leq (\omega + 2)^2 - (2\nu_1 + \omega + 2)$$

$$= \omega^2 + 3\omega + 2 - \sigma.$$

Hence,

$$2\varepsilon_1 \varepsilon_2' \le \omega^2 + 3\omega + 2 - \sigma. \tag{40}$$

However, since

$$(\varepsilon_1-2)(\varepsilon_2'-2)>0$$

it follows that

$$\varepsilon_1 \varepsilon_2' \ge 2(\varepsilon_1 + \varepsilon_2') - 4.$$
(41)

Therefore, combining this with (34), we obtain

$$2\varepsilon_1\varepsilon_2' \geq 4(\omega+2) - 8 = 4\omega.$$

Hence,

$$\omega^2 + 3\omega + 2 - \sigma \ge 4\omega,$$

and so

$$\omega^2 - \omega + 2 \ge \sigma,$$

as required.

15.8.1. example. If the type is $[2\nu_1 * 2\nu_1; \nu_1^7, \nu_1 - 1, \varepsilon, 2]$ where $\nu_1 > \varepsilon > 2$, then by

•
$$Y' = \nu_1 - 1 + \varepsilon + 2 = \nu_1 + \omega_1$$
.

•
$$Y' = \nu_1 - 1 + \varepsilon + 2 = \nu_1 + \omega_1$$
,
• $X' = (\nu_1 - 1)^2 + \varepsilon^2 + 4 = \nu_1^2 + \omega_1 - 2\overline{g}$

we get

$$\omega_1 = \varepsilon + 1,$$

and so

$$\omega = \varepsilon + 1 + \overline{q}$$
.

Moreover,

$$-2\nu_1 + 1 + \varepsilon^2 + 4 = \omega_1 - 2\overline{g}.$$

Hence,

$$\sigma = 2\nu_1 = \varepsilon^2 + 5 - (\omega_1 - 2\overline{q});$$

thus,

$$\sigma = (\omega_1 - 1)^2 + 5 - (\omega_1 - 2\overline{g});$$

where $g = \nu_1 - 1 - \frac{\varepsilon(\varepsilon - 1)}{2}$.

Suppose that g = 0, i.e., $\nu_1 = 1 + \frac{\varepsilon(\varepsilon - 1)}{2}$. Then $\omega = \varepsilon$ and

$$\sigma = \omega^2 - \omega + 2 = \alpha^2 + \alpha + 2$$
.

If
$$g = 1$$
 then

$$\sigma = \omega^2 - 3\omega + 6 = \alpha^2 - 3\alpha + 6.$$

16. Appendix

16.1. pairs with $\omega = 1, 2$.

Under the assumption $\sigma \geq 7$, we show the list of types of pairs with $\omega = 1, 2, 3, 4, 5, 6$. However, associated types are omitted, for simplicity.

Table 51. $\omega = 1, 2$

ω	σ	type	genus
1	7	[7*9,1;1]	27
2	7	[7*9,1;2]	26
2	8	$[8*8;4^7]$	7
2	8	$[8*8;4^7,3]$	4
2	8	$[8*8;4^7,3^2]$	1
2	10	$[10*11;5^9]$	0
2	12	$[12*12;6^7,5,4]$	0

16.2. pairs with $\omega = 3$.

Table 52. $\omega = 3$

ω	σ	type	genus
3	7	$[7*9,1;2^2]$	25
3	8	$[8*9;4^9]$	2
3	8	$[8*8;4^7,2]$	6
3	8	$[8*8;4^7,3,2]$	3
3	8	$[8*8;4^7,3^2,2]$	0
3	10	$[10*10;5^7,4,3]$	2
3	10	$[10*10;5^7,4]$	5
3	12	$[12*12;6^6,5^3]$	1
3	14	$[14*14;7^7,6,4]$	1
3	15	$[15*22,1;7^9]$	0
3	16	$[16*16;8^6,7^2,6]$	0
3	20	$[20*20;10^7,9,5]$	0

16.3. pairs with $\omega = 4$.

Table 53. $\omega = 4$

ω	σ	type	genus
4	7	$[7*9,1;2^3]$	24
4	8	$[8*9;4^9,2]$	1
4	8	$[8*8;4^{6}]$	13
4	8	$[8*8;4^6,3]$	10
4	8	$[8*8;4^6,3^2]$	7
4	8	$[8*8;4^6,3^3]$	4
4	8	$[8*8;4^6,3^4]$	1
4	8	$[8*8;4^{7},2^{2}]$	5
4	8	$[8*8;4^7,3,2^2]$	2
4	9	$[9*13,1;4^{10}]$	0
4	10	$[10*10;5^7,4,2]$	4
4	10	$[10*10;5^7,4,3,2]$	1
4	10	$[10*10;5^6,4^3]$	3
4	10	$[10*10;5^6,4^3,3]$	0
4	12	$[12*13;6^8,5]$	2
4	12	$[12*12;6^6,5^3,2]$	0
4	12	$[12*12;6^7,5]$	6
4	12	$[12 * 12; 6^7, 5, 3]$	3
4	12	$[12*12;6^7,5,3^2]$	0
4	14	$[14*14;7^7,5^2]$	2
4	14	$[14*14;7^7,6,4,2]$	0
4	16	$[16*16;8^7,7,4]$	2
4	16	$[16*16;8^5,7^4]$	1
4	16	$[16*17;8^8,6]$	1
4	18	$[18*18;9^7,7,6]$	1
4	19	$[19*19;9^9]$	0
4	19	$[19*38,2;9^9]$	0
4	20	$[20*20;10^5,9^3,8]$	0
4	22	$[22*22;11^7,10,5]$	1
4	22	$[22*22;11^6,10^2,7]$	0
4	22	$[22*22;11^7,8^2]$	0
4	30	$[30*30;15^7,14,6]$	0

Table 54. $\omega = 5$

ω	σ	type	genus
5	7	$[7*10,1;3^{11}]$	0
5	7	$[7*10,1;3^{10}]$	3
5	7	$[7*10,1;3^9]$	6
5	7	$[7*10,1;3^8]$	9
5	7	$[7*10,1;3^7]$	12
5	7	$[7*10,1;3^6]$	15
5	7	$[7*10,1;3^5]$	18
5	7	$[7*10,1;3^4]$	21
5	7	$[7*10,1;3^3]$	24
5	7	$[7*10,1;3^2]$	27
5	7	[7*10,1;3]	30
5	7	[7*10,1;1]	33
5	7	$[7*9,1;2^4]$	23
5	8	$[8*8;4^6,3^4,2]$	0
5	8	$[8*9;4^9,2^2]$	0
5	8	$[8*8;4^7,3,2^3]$	1
5	8	$[8*9;4^8,3^2]$	2
5	8	$[8*8;4^6,3^3,2]$	3
5	8	$[8*8;4^7,2^3]$	4
5	8	$[8*9;4^8,3]$	5
5	8	$[8*8;4^6,3^2,2]$	6
5	8	$[8*9;4^8]$	8

16.4. pairs with $\omega = 5$ (1).

16.5. pairs with $\omega = 5$ (2).

Table 55. $\omega = 5$ (2)

ω	σ	type	genus
5	10	$[10*10;5^7,4,3,2^2]$	0
5	10	$[10*10;5^5,4^5]$	1
5	10	$[10*11;5^8,4,3]$	1
5	10	$[10*10;5^6,4^3,2]$	2
5	10	$[10*10;5^7,3^3]$	2
5	10	$[10*10;5^7,4,2^2]$	3
5	10	$[10*11;5^8,4]$	4
5	10	$[10*10;5^7,3^2]$	5
5	10	$[10*10;5^7,3]$	8
5	10	$[10*10;5^7]$	11
5	11	$[11*11;5^{10}]$	0
5	11	$[11*22,2;5^{10}]$	0
5	12	$[12*12;6^5,5^4,4]$	0
5	12	$[12*13;6^8,4^2]$	0
5	12	$[12*12;6^7,4^2,3]$	1
5	12	$[12*13;6^8,5,2]$	1
5	12	$[12*12;6^7,5,3,2]$	2
5	12	$[12*12;6^{7},4^{2}]$	4
5	12	$[12*12;6^7,5,2]$	5
5	13	$[13*19,1;6^9,3]$	0
5	13	$[13*19,1;6^9]$	3
5	14	$[14*14;7^6,6^2,5,3]$	0
5	14	$[14*14;7^{7},5,4^{2}]$	0
5	14	$[14*14;7^{7},5^{2},2]$	1
5	14	$[14*14;7^7,6,3^2]$	1
5	14	$[14*14;7^6,6^2,5]$	3
5	14	$[14*14;7^{7},6,3]$	4
5	14	$[14*14;7^7,6]$	7

16.6. pairs with $\omega = 5$ (3).

Table 56. $\omega = 5$ (2)

ω	$\mid \sigma \mid$	type	genus
5	16	$[16*16;8^5,7^4,2]$	0
5	16	$[16*17;8^8,6,2]$	0
5	16	$[16*16;8^7,7,4,2]$	1
5	16	$[16*17;8^7,7^2]$	2
5	18	$[18*18;9^7,7,6,2]$	0
5	18	$[18*18;9^7,8,4,3]$	0
5	18	$[18*18;9^6,8^2,6]$	2
5	18	$[18*18;9^7,8,4]$	3
5	20	$[20*20;10^4,9^5]$	1
5	20	$[20*21;10^7,9,8]$	1
5	22	$[22 * 22; 11^7, 10, 5, 2]$	0
5	22	$[22*23;11^8,7]$	1
5	23	$[23*35,1;11^9]$	0
5	24	$[24*24;12^4,11^4,10]$	0
5	24	$[24*25;12^7,10^2]$	0
5	24	$[24*24;12^{7},10,7]$	1
5	24	$[24*24;12^7,11,5]$	2
5	25	$[25*37,1;12^8,9]$	0
5	26	$[26*26;13^6,12,11,9]$	0
5	28	$[28*29;14^8,8]$	0
5	30	$[30*30;15^{7}_{_},13,8]$	0
5	32	$[32*32;16^{7}_{2},15,6]$	1
5	42	$[42*42;21^7,20,7]$	0

16.7. pairs with $\omega = 6$ (1).

Table 57. $\omega = 6$

ω	$ \sigma $	type	genus
6	7	$[7*10,1;3^{10},2]$	2
6	7	$[7*10,1;3^9,2]$	5
6	7	$[7*10,1;3^8,2]$	8
6	7	$[7*9,1;2^5]$	22
6	8	$[8*8;4^7,3,2^4]$	0
6	8	$[8*10;4^{10},3]$	0
6	8	$[8*8;4^5,3^6]$	1
6	8	$[8*9;4^8,3^2,2]$	1
6	8	$[8*8;4^6,3^3,2^2]$	2
6	8	$[8*8;4^7,2^4]$	3
6	8	$[8*10;4^{10}]$	3
6	8	$[8*8;4^5,3^5]$	4
6	8	$[8*9;4^8,3,2]$	4
6	8	$[8*8;4^6,3^2,2^2]$	5
6	8	$[8*8;4^5,3^4]$	7
6	8	$[8*9;4^8,2]$	7
6	8	$[8*8;4^6,3,2^2]$	8
6	8	[8*10,1;1]	35
6	9	$[9*13,1;4^9,3^2]$	0
6	9	$[9*13,1;4^9,3]$	3
6	9	$[9*13,1;4^9]$	6

Table 58. $\omega = 6$

ω	σ	type	genus
6	10	$[10*10;5^5,4^5,2]$	0
6	10	$[10*10;5^6,4^2,3^3]$	0
6	10	$[10*11;5^8,4,3,2]$	0
6	10	$ 10*10;5^{6},4^{3},2^{2} $	1
6	10	$[10*10;5^7,3^3,2]$	1
6	10	$[10*10;5^7,4,2^3]$	2
6	10	$[10*11;5^7,4^3]$	2
6	10	$[10*10;5^6,4^2,3^2]$	3
6	10	$[10*11;5^8,4,2]$	3
6	10	$[10*10;5^7,3^2,2]$	4
6	10	$[10*10;5^6,4^2,3]$	6
6	10	$[10*10;5^7,3,2]$	7
6	11	$[11*16,1;5^9,3]$	2
6	11	$[11*16,1;5^9]$	5
6	12	$[12*12;6^7,4^2,3,2]$	0
6	12	$[12*13;6^8,5,2^2]$	0
6	12	$[12*12;6^7,5,3,2^2]$	1
6	12	$[12*12;6^4,5^6]$	1
6	12	$[12*13;6^7,5^2,4]$	1
6	12	$[12*12;6^6,5^2,4,3]$	2
6	12	$[12*12;6^7,4^2,2]$	3
6	12	$[12*12;6^7,5,2^2]$	4
6	12	$[12*12;6^6,5^2,4]$	5
6	13	$[13*20,1;6^{10}]$	0
6	13	$[13*19,1;6^9,2]$	2

16.8. pairs with $\omega = 6$ (2).

Table 59. $\omega = 6$

ω	σ	type	genus
6	14	$[14*14;7^7,5^2,2^2]$	0
6	14	$[14*14;7^7,6,3^2,2]$	0
6	14	$\begin{bmatrix} 14 * 14; 7^4, 6^5, 5 \end{bmatrix}$	0
6	14	$[14*15;7^7,6,5^2]$	0
6	14	$[14*16;7^9,4]$	0
6	14	$[14*14;7^5,6^4,3]$	1
6	14	$[14*14;7^6,6^2,4^2]$	1
6	14	$[14*15;7^8,5,3]$	1
6	14	$[14*14;7^6,6^2,5,2]$	2
6	14	$[14*14;7^7,6,3,2]$	3
6	14	$[14*14;7^5,6^4]$	4
6	14	$[14*15; 7^8, 5]$	4
6	14	$[14*14;7^7,6,2]$	6
6	15	$[15*22,1;7^8,6,4]$	0
6	16	$[16*16;8^7,7,4,2^2]$	0
6	16	$[16*16;8^6,7,6^2,4]$	0
6	16	$[16*17;8^8,5,4]$	0
6	16	$[16*18;8^9,3]$	0
6	16	$[16*16;8^7,6,5,3]$	1
6	16	$[16*17;8^{7},7^{2},2]$	1
6	16	$[16*16;8^7,7,3^2]$	2
6	16	$[16*18;8^9]$	3
6	16	$[16*16;8^7,6,5]$	4
6	16	$[16*16;8^7,7,3]$	5

16.9. pairs with $\omega = 6$ (3).

Table 60. $\omega = 6$ (2)

ω	σ	type	genus
6	17	$[17*25,1;8^8,7,3]$	0
6	17	$[17*25,1;8^8,7]$	3
6	18	$[18*18;9^6,8,7^2,3]$	0
6	18	$[18*18; 9^7, 7, 5, 4]$	0
6	18	$[18*19;9^8,6,3]$	0
6	18	$[18 * 18; 9^6, 8^2, 6, 2]$	1
6	18	$[18 * 18; 9^{6}, 8^{2}, 6, 2]$ $[18 * 18; 9^{7}, 8, 4, 2]$	2
6	18	$[18*18; 9^6, 8, 7^2]$	3
6	$\frac{18}{18}$	$[18*19;9^8,6]$	3
6	20	$[20*20;10^4,9^5,2]$	0
6	20	$[20 * 20 \cdot 10^7 \ 8 \ 6 \ 3]$	0
6	20	$[20*21;10^{7},9,8,2]$	0
6	20	$[20*20;10^7,9,8,2] [20*20;10^7,9,4,3]$	1
6	20	$[20*21;10^6,9^3]$	2
6	20	$[20*20;10^7,8,6]$	3
6	20	$[20*20;10^7,9,4]$	4
6	21	$[21*31,1;10^8,8]$	2
6	22	$[22*23;11^8,7,2]$	0
6	22	$[22 * 22; 11^6, 10, 9, 8]$	2
6	24	$[24 * 24; 12^7, 10, 7, 2]$	0
6	24	$[24*24;12^7,11,4^2]$	0
6	24	$[24 * 24; 12^7, 11, 5, 2]$	1
6	24	$[24 * 24; 12^3, 11^6]$	1
6	24	$[24*25;12^6,11^2,10]$	1
6	24	$[24 * 24; 12^6, 11^2, 7]$	2
6	26	$[26*26;13^7,12,5,3]$	0
6	26	$[26*26;13^5,12^3,9]$	1
6	26	$[26*26;13^6,12,10^2]$	1
6	26	$[26*26;13^7,12,5]$	3
6	27	$[27*28;13^9]$	0
6	27	$[27*55, 2; 13^9]$	0
6	28	$[28*41,1;13^9]$	0
6	28	$[28*28;14^3,13^5,12]$	0
6	28	$[28*29;14^6,13,12^2]$	0
6	28	$[28*30;14^8,11]$	0
6	28	$[28 * 28; 14^7, 11, 9]$	1
6	29	$[29*43,1;14^7,13,11]$	0
6	30	$[30*30;15^6,13^2,11]$	0
6	30	$[30*30;15^6,14^2,8]$	1
6	31	$[31*46,1;15^8,10]$	0
6	32	$[32 * 32; 16^7, 15, 6, 2]$	0
6	32	$[32 * 32; 16^6, 15, 14, 10]$	0
6	32	$\begin{bmatrix} 32 * 32; 16^7, 12, 11 \\ [34 * 34; 17^7, 16, 6] \end{bmatrix}$	0
6	34	$[34*34;17^7,16,6]$	2
6	36	$[36*37;18^8,9]$	0
6	38	$[38*38;19^{7},17,9]$	0
6	44	$[44*44;22^{7},21,7]$	1
6	56	$[56*56;28^7,27,8]$	0

17. Pairs with small α

Table 61. $\alpha = 1, 2, 3$

α	σ	type	genus
1	10	$[10*11;5^9]$	0
1	12	$[12*12;6^7,5,4]$	0
2	8	$[8*8;4^7,3^2,2]$	0
2	8	$[8*8;4^7,3^2]$	1
2	15	$[15*22,1;7^9]$	0
2	16	$[16*16;8^6,7^2,6]$	0
2	20	$[20*20;10^7,9,5]$	0
3	9	$[9*13,1;4^{10}]$	0
3	10	$[10*10;5^6,4^3,3]$	0
3	12	$[12*12;6^6,5^3,2]$	0
3	12	$[12*12;6^7,5,3^2]$	0
3	12	$[12*12;6^6,5^3]$	1
3	14	$[14*14;7^7,6,4,2]$	0
3	14	$[14*14;7^7,6,4]$	1
3	19	$[19*19;9^9]$	0
3	19	$[19*38,2;9^9]$	0
3	20	$[20*20;10^5,9^3,8]$	0
3	22	$[22 * 22; 11^6, 10^2, 7]$	0
3	22	$[22*22;11^7,8^2]$	0
3	30	$[30*30;15^7,14,6]$	0

17.1. **pairs with** $\alpha = 1, 2, 3$.

Table 62. $\alpha = 4$

α	σ	type	genus
4	7	$[7*10,1;3^{11}]$	0
4	8	$[8*8;4^6,3^4,2]$	0
4	8	$[8*9;4^9,2^2]$	0
4	8	$[8*8;4^6,3^4]$	1
4	8	$[8*9;4^9,2]$	1
4	8	$[8*9;4^9]$	2
4	10	$[10*10;5^{7},4,3,2^{2}]$	0
4	10	$[10*10;5^7,4,3,2]$	1
4	10	$[10*10;5^7,4,3]$	2
4	11	$[11*11;5^{10}]$	0
4	11	$[11*22,2;5^{10}]$	0
4	12	$[12*12;6^5,5^4,4]$	0
4	12	$[12*13;6^8,4^2]$	0
4	13	$[13*19,1;6^9,3]$	0
4	14	$[14*14;7^6,6^2,5,3]$	0
4	14	$[14*14;7^7,5,4^2]$	0
4	16	$[16*16;8^5,7^4,2]$	0
4	16	$ \begin{bmatrix} 16*16; 8^5, 7^4, 2 \\ 16*17; 8^8, 6, 2 \end{bmatrix} $	0
4	16	$[16*16;8^5,7^4]$	1
4	16	$[16*17;8^8,6]$	1
4	18	$[18*18;9^7,7,6,2]$	0
4	18	$[18*18;9^{7},8,4,3]$	0
4	18	$[18*18;9^7,7,6]$	1
4	22	$\begin{bmatrix} [22*22;11^7,10,5,2] \\ [22*22;11^7,10,5] \end{bmatrix}$	0
4	22	[22*22;11',10,5]	1
4	23	$[23*35,1;11^9]$	0
4	24	$[24*24;12^4,11^4,10]$	0
4	24	$[24*25;12^7,10^2]$	0
4	25	$[25*37,1;12^8,9]$	0
4	26	$[26*26;13^6,12,11,9]$	0
4	28	$[28 * 29; 14^8, 8]$	0
4	30	$[30*30;15^7,13,8]$	0
4	42	$[42*42;21^7,20,7]$	0

17.2. pairs with $\alpha = 4$.

Table 63. $\alpha = 5$

α	σ	type	genus
5	8	$[8*8;4^7,3,2^4]$	0
5	8	$[8*10;4^{10},3]$	0
5	8	$[8*8;4^7,3,2^3]$	1
5	8	$[8*8;4^7,3,2^2]$	2
5	8	$[8*8;4^7,3,2]$	3
5	8	$[8*8;4^7,3]$	4
5	9	$[9*13,1;4^9,3^2]$	0
5	10	$[10*10;5^5,4^5,2]$	0
5	10	$[10*10;5^6,4^2,3^3]$	0
5	10	$[10*11;5^8,4,3,2]$	0
5	10	$[10*10;5^5,4^5]$	1
5	10	$[10*11;5^8,4,3]$	1
5	12	$[12*12;6^7,4^2,3,2]$	0
5	12	$[12*13;6^{8},5,2^{2}]$	0
5	12	$[12*12;6^7,4^2,3]$	1
5	12	$[12*13;6^8,5,2]$	1
5	12	$[12*13;6^8,5]$	2
5	13	$[13*20,1;6^{10}]$	0
5	14	$[14*14;7^7,5^2,2^2]$	0
5	14	$[14*14;7^7,6,3^2,2]$	0
5	14	$[14*14;7^4,6^5,5]$	0
5	14	$[14*15;7^7,6,5^2]$	0
5	14	$[14*16;7^9,4]$	0
5	14	$[14*14;7^7,5^2,2]$	1
5	14	$[14*14;7^{7},6,3^{2}]$	1
5	14	$[14*14;7^7,5^2]$	2
5	15	$[15*22,1;7^8,6,4]$	0

17.3. pairs with $\alpha = 5$.

Table 64. $\alpha = 5, continued$

α	σ	type	genus
5	16		0
5	16	$[16*16;8^6,7,6^2,4]$	0
5	16	$[16*17;8^8,5,4]$	0
5	16	$[16*18;8^9,3]$	0
5	16	$[16*16;8^7,7,4,2]$	1
5	16	$[16*16;8^7,7,4]$	2
5	17	$[17*25,1;8^8,7,3]$	0
5	18	$[18*18;9^{6},8,7^{2},3]$ $[18*18;9^{7},7,5,4]$	0
5	18	$[18*18;9^7,7,5,4]$	0
5	18	$[18*19;9^{\circ},6,3]$	0
5	20	$[20*20;10^4,9^5,2]$	0
5	20	$[20*20;10^7,8,6,3]$	0
5	20		0
5	20	$[20*20;10^4,9^5]$	1
5	20	$[20*21;10^7,9,8]$	1
5	22	$[22*23;11^8,7,2]$	0
5	22	$[22*23;11^8,7]$	1
5	24	$[24*24;12^7,10,7,2]$	0
5	24	$[24*24;12^{7},11,4^{2}]$	0
5	24	$[24*24;12^7,10,7]$	1
5	26	$[26*26;13^7,12,5,3]$	0
5	27	$[27*28;13^9]$	0
5	27	$[27*55, 2; 13^9]$	0
5	28	$[28*41,1;13^9]$	0
5	28	$[28*28;14^3,13^5,12]$	0
5	28	$[28*29;14^6,13,12^2]$	0
5	28	$[28*30;14^8,11]$	0
5	29	$[29*43,1;14^7,13,11]$	0
5	30	$[30*30;15^6,13^2,11]$	0
5	31	$[31*46,1;15^8,10]$	0
5	32	$[32*32;16^7,15,6,2]$	0
5	32	$[32 * 32; 16^6, 15, 14, 10]$	0
5	32	$[32 * 32; 16^7, 12, 11]$ $[32 * 32; 16^7, 15, 6]$	0
5	32	[32*32;16',15,6]	1
5	36	$[36*37;18^8,9]$	0
5	38	$[38*38;19^7,17,9]$	0
5	56	$[56*56;28^7,27,8]$	0

17.4. pairs with $\alpha = 5$, continued.

Table 65. $\alpha = 6, (1)$

α	σ	type	genus
6	7	$[7*14,2;3^{12}]$	0
6	7	$[7*7;3^{12}]$	0
6	8	$[8*8;4^5,3^6,2]$	0
6	8	$[8*9;4^8,3^2,2^2]$	0
6	8	$[8*8;4^5,3^6]$	1
6	8	$[8*9;4^8,3^2,2]$	1
6	8	$[8*9;4^8,3^2]$	2
6	10	$[10*10;5^6,4^3,2^3]$	0
6	10	$[10*10;5^7,3^3,2^2]$	0
6	10	$[10*11;5^6,4^5]$	0
6	10	$[10*12;5^9,4,3]$	0
6	10	$[10*10;5^6,4^3,2^2]$	1
6	10	$\begin{bmatrix} [10*10;5^{7},3^{3},2] \\ [10*10;5^{6},4^{3},2] \end{bmatrix}$	1
6	10	$[10*10;5^6,4^3,2]$	2
6	10	$[10*10;5^7,3^3]$	2
6	10	$[10*10;5^6,4^3]$	3
6	11	$[11*16,1;5^8,4^2,3]$	0
6	12	$[12*12;6^7,5,3,2^3]$	0
6	12	$[12*12;6^4,5^6,2]$	0
6	12	$[12*12;6^5,5^4,3^2]$	0
6	12	$\begin{bmatrix} 12 * 12; 6^6, 5, 4^3, 3 \end{bmatrix}$	0
6	12	$[12*13;6^7,5^2,4,2]$	0
6	12	$[12*13;6^8,4,3^2]$	0
6	12	$[12*12;6^7,5,3,2^2]$	1
6	12	$[12*12;6^4,5^6]$	1
6	12	$[12*13;6^7,5^2,4]$	1
6	12	$[12*12;6^7,5,3,2]$	$\frac{2}{2}$
6	12	$[12*12;6^7,5,3]$	3

17.5. pairs with $\alpha = 6, (1)$.

Table 66. $\alpha = 6, (2)$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	σ	type	genus
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	14	$[14*14;7^5,6^4,3,2]$	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		14		0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		14		0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		14		0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		14		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		14		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		16		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$[16*17;8^7,7^2,2^2]$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$[16*16;8^3,7^6,6]$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$[16*18;8^8,7,5]$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		16	$[16*16;8^7,6,5,3]$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$[16*17;8^7,7^2,2]$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$[16*17;8^7,7^2]$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			[17*25,1;87,72,5]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$[18*18;9^6,8^2,6,2^2]$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$[18*18;9^5,8^3,6,5]$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$[18*18;9^6,7^3,5]$	
$\begin{array}{c c c} 6 & 18 & [18*18; 9^6, 8^2, 6, 2] & 1 \\ 6 & 18 & [18*18; 9^6, 8^2, 6] & 2 \end{array}$			$[18*18;9^6,8,6^3]$	
$6 \mid 18 \mid [18 * 18; 9^6, 8^2, 6] \mid 2$			$[18*19;9^6,8^3,4]$	
			$[18*18;9^6,8^2,6,2]$	
$6 \mid 19 \mid [19 * 28, 1; 9^8, 7, 4] \mid 0$	6	19	$[19*28,1;9^8,7,4]$	0

17.6. **pairs with** $\alpha = 6, (2)$.

Table 67. $\alpha = 6, (3)$

α	σ	type	genus
6	20	$[20*20;10^7,9,4,3,2]$	0
6	20	$[20*20;10^6,9,8,7,4]$	0
6	20	$[20*20;10^7,7,6,5]$	0
6	20	$[20*21;10^8,5^2]$	0
6	20	$[20*22;10^8,9,3]$	0
6	20	$[20*20;10^7,9,4,3]$	1
6	21	$[21*31,1;10^7,9^2,3]$	0
6	22	$[22*22;11^5,10^3,8,3]$	0
6	22	$[22*22;11^6,10^2,6,4]$	0
6	22	$[22*22;11^6,9^3,3]$	0
6	22	$[22*22;11^7,9,5^2]$	0
6	24	$[24*24;12^7,11,5,2^2]$	0
6	24	$[24*24;12^3,11^6,2]$	0
6	24	$[24*24;12^7,9,8,3]$	0
6	24	$[24*25;12^6,11^2,10,2]$	0
6	24	$[24*25;12^8,7,3]$	0
6	24	$[24*24;12^7,11,5,2]$	1
6	24	$[24*24;12^3,11^6]$	1
6	24	$[24*25;12^6,11^2,10]$	1
6	24	$[24*24;12^7,11,5]$	2
6	26	$[26*26;13^5,12^3,9,2]$	0
6	26	$\left[26*26;13^6,12,10^2,2\right]$	0
6	26	$[26*26;13^7,11,7,3]$	0
6	26	$[26*26;13^5,12^3,9]$	1
6	26	$[26*26;13^6,12,10^2]$	1
6	28	$[28*28;14^7,11,9,2]$	0
6	28	$[28*28;14^7,11,9]$	1

Table 68. $\alpha = 6, (4)$

α	σ	type	genus
6	30	$[30*30;15^6,14^2,8,2]$	0
6	30	$[30*30;15^6,14^2,8]$	1
6	31	$[31*48,1;15^9]$	0
6	32	$[32*32;16^7,15,5,4]$	0
6	32	$[32 * 32; 16^2, 15^6, 14]$	0
6	32	$[32*33;16^5,15^2,14^2]$	0
6	32	$[32*34;16^7,15,13]$	0
6	33	$[33*49,1;16^6,15^2,13]$	0
6	34	$[34*34;17^5,16^2,14,13]$	0
6	34	$[34*34;17^6,14^3]$	0
6	34	$[34 * 35; 17^6, 16^2, 12]$	0
6	36	$[36*36;18^7,17,6,3]$	0
6	36	$[36*36;18^6,17,15,12]$	0
6	38	$[38*38;19^5,18^3,11]$	0
6	40	$[40*40;20^7,17,11]$	0
6	44	$[44*44;22^7,21,7,2]$	0
6	44	$[44*44;22^7,21,7]$	1
6	46	$[46*46;23^6,22^2,10]$	0
6	72	$[72*72;36^7,35,9]$	0

18. BIBLIOGRAPHY

REFERENCES

- [1] W.Barth, C.Peters, A. van de Ven, Compact Complex surfaces, Ergebnisse der Mathematik, Springer Verlag, 1984.
- [2] E.Bombieri, Canonical models of surfaces of general types, Publ. Math., I.H.E.S., **42**(1973), 171-219.
- [3] J.L. Coolidge, A Treatise on Algebraic Plane Curves, Oxford Univ. Press., (1928).
- [4] Oliver Debarre, Higher-dimensional Algebraic Geometry, UTX, Springer, (2001).
- [5] R. Hartshorne, Curves with high self-intersection on algebraic surfaces, Publ.I.H.E.S. **36**, (1970), 111-126.
- [6] S.Iitaka, On irreducible plane curves, Saitama Math. J. 1 (1983), 47-63.
- [7] S.Iitaka, Birational geometry of plane curves, Tokyo J. Math., 22(1999), pp289-321.
- [8] S.Iitaka, On logarithmic plurigenera of algebraic plane curves, in Iitaka's web page¹.
- [9] O.Matsuda, On numerical types of algebraic curves on rational surfaces, Research on Birational Geometry of Algebraic Curves, Gakushuin University, 2006,167–174.
- [10] S.Terashima, On numerical types of pairs with small ω , Research on Birational Properties of Algebraic Curves, Gakushuin University, 2009,221–240.

Shigeru IITAKA
Department of Mathematics, Faculty of Science
Gakushuin University
Mejiro, Toshima
Tokyo, 171-8588 JAPAN

e-mail: 851051@gakushuin.ac.jp

¹http://www-cc.gakushuin.ac.jp/%7E851051/iitaka1.htm