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1. INTRODUCTION

Here, we shall study birational properties of algebraic plane curves from
the viewpoint of Cremonian geometry. As a matter of fact, let S be a
nonsingular rational surface and D a nonsingular curve on S. (S,D) are
called pairs and we study such pairs. The purpose of Cremonian geometry
is the study of birational properties of pairs (S, D).

Suppose that m > a > 1. Then Py, o[D] = dim |mKg + aD|+1 are called
mixed plurigenera, which depend on S and D. It is my understanding that
these invarints embody the essential geometric properties of the curve D on

S.

Letting Z stand for Kg + D, we see Py, ,[D] = dim|mZ| + 1, called
logarithmic plurigenera of S— D, from which logarithmic Kodaira dimension
is introduced, denoted by x[D].

Assume that x[D] = 2 and that there exist no (—1) curves E such that
E-D < 1. Then such pairs are proved to be minimal models in the birational
geometry of pairs ([7],[6]).

Moreover, if § # P2, then there exists a surjective morphism pr : S — P!
whose general fibers are P1. The least mapping degree of pr|p : D — P?
for all such pr.is denoted by o.

By definition, I ;[D] = g, which is the genus of D, and g is defined to
be g — 1.

If 0 > 4 then D + 2K is nef and big; furthermore,

Py [D]=2%-g+1=A+1, where A= Z? —;

If 0 > 6 then |D + 3Kg| # 0 and

Py [D]=37224+1-7+D*=34A-a+1=Q-w+1



4 SHIGERU IITAKA GAKUSHUIN UNIVERSITY

where o = 45 — D%, Q = (3Z — 2D) - Z = 3Z% — 4g and w = 3g — D?.
The invariant w is rewritten as w.

2. MAIN RESULT

w is a very powerful invariant, which determines the basic structure of
pairs (S, D) . We shall establish the upper bound estimate of o by w provided
that kD] = 2, (S, D) is minimal and o > 7. Namely, we shall verify the next
inequality (1).

Theorem 1. If 0 > 7 then
o< (wH+D(w+2)=w? +3w+2 (1)

except for the type [7x9,1;1].
In the exceptional case, 0 =7 and w = 1.

2.1. minimal models.
We start with recalling some basic results in birational geometry of pairs.

Proposition 1. Suppose that (S, D) is minimal. Let g denote the genus of
the curve D.
(1) If g > 0 then Z = Kg + D is nef. Moreover, when k[D] =2, Z is
big.
(2) If g = 0 and K[D] = 2 then D?> < —5 and letting B denote —D?,
Zg = Z — %D is nef and big.

Minimal pairs are obtained from some kind of singular models, namely,
# minimal pairs which will be defined below. Any nontrivial P'— bundle
over P! has a section A, with negative self intersection number, which is
denoted by a symbol X, where —B = A ? if B > 0. Yp is said to be a
Hirzebruch surface of degree B after Kodaira.

Let X denote the product of two projective lines.

The Picard group of ~p is generated by a section A, and a fiber F, =
p 1(c) of the P!~ bundle, where ¢ € P! and p: £5 — P! is the projection.

Let C be an irreducible curve on Xg. Then C ~ oAy + eF,, for some
o and e. Here the symbol ~ means the linear equivalence between divisors.
We have C' - F, =0 and C' - Ay, = e — B - 0. Note that k[A] = —o0.

Hereafter, suppose that C' # As. Thus C'- A = e—B-0 > 0 and hence,
e > Bo. Denoting 2¢e — Bo by B, we have the formula:

(o —1)(B —2)
go="—"0 "
Thus introducing 7,,, by
T = (0 — m)(B — 2m), (2)

we obtain
(Ko + C)? =1,
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where K denotes a canonical divisor on % p.
Moreover, letting Zy be Ky + C, we obtain

vZy— (v —1)C ~C+vKy
(vZy — (v — 1)C) - Zop = Typ1 — 2(v — 1)%,
and
(vZo— (v —1)C)-C =1, — 20°.
Furthermore, define wy by
wy = (32 —220) . C'

Then wy = 5 — 9.

Therefore,
,
_ vj(vj = 3)
7=1
T

73 vj(vj —3)
=—-9- .

D S

Jj=1
2.2. types of pairs and # minimal pairs. By v, 19, - -, v, we denote the

multiplicities of all singular points (including infinitely near singular points)

of C" where vy > o > -+ > v,
/

=4

e
Q XB
H

The symbol [0 * e, B; v, 19, - -, vp] is said to be the type of (X, C).
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Definition 1. the pair (X, () is said to be # minimal , if
e 0> 2 and e — 0 > Buy;
e moreover, if B =1 and r = 0 then assume e — o > 1.

Using elementary transformations, we get

Theorem 2. If D is not transformed into a line on P? by Cremona trans-
formations, then k[D] > 0. In this case, a minimal pair (S, D) is obtained
from a # minimal pair (Xp,C) by shortest resolution of singularities of
C using blowing ups except for (S,D) = (P2,Cy), Cyq being a nonsingular
curve.

Theorem 3. If (S, D) is obtained from a # minimal pair(model) (X, C)
by shortest resolution of singularities of C' ,then (S, D) is relatively minimal.
In other words,for any (—1) curve I' on S, T'- A > 2.

2.3. w for nonsingular plane curves.
First we treat pairs with small o(cf Terashima([10])). Suppose that D

d(d—9)
2

is a nonsingular plane curve on P2 of degree d. Then w = and we

obtain the next table.

TABLE 1. w for nonsingular plane curves

d| 3 4 5 6 7 8 910
w[-9 -10 =10 -9 -7 —4 0 5

2.4. w for small o.

24.1. 0 =2.
Suppose that 0 = 2. Then D? = 4g+4 = 4g+8 and hence, w = 3g—D? =
—7—¢g< —8and a= —8.

24.2. 0 =3.
Suppose that o = 3. Then D? = 3g + 6 = 35 + 9 and hence, w = —9 and
a=9g-—9.

2.4.3. 0 =4.

Suppose that o = 4. Then B =2¢—4B. We distinguish the various cases
according to the value of B. B

(1) B=0.Then e =4+wu and B = 2(4+u) = 8+ 2u; thus, 73 = 2(u+1)
andsow=u+1—-9+1t =u+ty— 8. Since g =9+ 3u —ty > 0, we get
to < 9+ 3u. _

(2) B =1.Then e = 4+u+v; and B = 442u+2vy; thus, 73 = 2u+21 —2.
Hence, w = u + 11 — 10 + t2. Since g = 3(1 + u + 1) — t2 > 0, we get
to < 3+ 3u1 + 3u.

Ifr=0thenu>1landw=u—-9 > -8.

Ifry =2thenty >landw=u—-8+1t > 7.
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TABLE 2. w wheno =4,8B=0

ul| 0 1 2 3 4 5 6 7 8
to

0| -8 -7 -6 -5 -4 -3 -2 -1 0
1/-7 -6 -5 -4 -3 -2 -1 0 1
2|-6 -5 -4 -3 -2 -1 0 1 2
3|-5 -4 -3 -2 -1 0 1 2 3

TABLE 3. wwheno=4,B=1,r=0

|1l 2 3 4 5 6 7 8
w|-8 -7 —6 -5 —4 -3 -2 -1

TABLE 4. wwheno=4,B=1,v; =2

u | 0 1 2 3 4 5 6 7 8
to

11-7 -6 -5 -4 -3 -2 -1 0 1
2({-6 -5 -4 -3 -2 -1 0 1 2
3[-5 -4 -3 -2 -1 0 1 2 3

(3) B > 2. Then ¢ = 4B + u and B = 4B + 2u; thus, 73 = 4B — 6 + 2u
and so w =2(B —2) +u — 8 + to.
If r =0, then w = 2(B —2) + u — 8. Otherwise, w = 2(B — 2) +u — 8 + ta.

TABLE 5. wwheno=4,B>2r=0

w| 0 1 2 3 4 5 6 7 8
B

2(-8 -7 -6 -5 -4 -3 -2 -1 0
3|-7 -6 -5 -4 -3 -2 -1 0 1
41-6 -5 -4 -3 -2 -1 0 1 2

244. 0 =5.
Suppose that 0 = 5. Then B = 2¢ —558. We distinguish the various cases
according to the value of B.

(1) B=0. Then ¢ = 5+ v and B = 10 + 2u; thus, 73/2 = 2u — 1 and so
w=2u—5+t9. Since g = 4(4+ u) —ty > 0, we get to < 16 + 4u.

(2) B=1 Thene =5+u+uv; and B = 5+ 2u + 2uy; thus, 73 =
2(2u + 2v; — 1). Hence, w = 2u + 2v; — 10 + 1.

If r =0 then v > 1 and w = 2u — 8.

If r > 0 then w = 2u — 6 + to.
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TABLE 6. w when o =5,8 =0

wu| 0 1 2 345
l2

0[-5 -3 -1 1 3 5
1|-4 -2 0 2 46
2|-3 -1 1 3 5 7
31-2 0 2 4 6 8

TABLE 7. w wheno=5,B=1,r=0

u| 1 2 3 4567
w|l-6 -4 -2 0 2 4 6

TABLE 8. w wheno =5,B=1,7>0

ul| 0 1 2 3 4
to

11-5 -3 -1 1 3
21—-4 -2 0 2 4
3|1-3 -1 1 3 5

Since g = 3(1 +u+v1) —t2 > 0, we get to < 3+ 3v1 + 3u.
Ifr=0thenu>1and w=u—9.
If vy =2thent; >1and w =u— 8+ 1s.

24.5. 0 =6.
Suppose that 0 = 6. Then B = 2¢ —65. We distinguish the various cases
according to the value of B.

(1) B=0. Then e = 6 + u and B = 12 + 2u; thus, 73/2 = 9 + 3u and so
w = 3u + t9. Since g = 25 + Su — to — 3t3 > 0, we get to + 3t3 < 25 + Hu.

TABLE 9. w when o =6,B =0

ul0 1 2 3 4 5
to

00 3 6 9 12
111 4 7 10 13

(2) B=1.Then e =6+u+v, and B = 6+2u+2u; thus, 73 = 6(u+11).
Hence, w = 3u + 3v1 — 9 + ta.

If r =0 then v > 1 and w = 3u — 6.

Ifr >0and t3 =0 then e =8 + u and w = 3u — 3 + to.

If r > 0and t3 > 0 then e =9 + u and w = 3u + 5.
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TABLE 10. w wheno =6,8B=1,r=0

6 7
12 15

ul| 1 2
| -3 0

3 45
3 6 9

TABLE 11. w wheno=6,B=1,r >0

u| 0 1 2 3 4
to

11-2 1 4 7 10
21-1 2 5 8 11
310 3 6 9 12

TABLE 12. w when o0 =6,8 =1,13 >0

01 2 3 4

IS

=+~
[\v}

9 12 15
10 13 16
11 14 17
12 15 18

W N = O
S O W
NelNo ol N B ey

24.6. c="1.
Suppose that 0 = 7. Then B = 2¢ — 7B. We distinguish the various cases

according to the value of B.

(1) B=0. Then e = 7+ u and B = 14 + 2u; thus, 73/2 = 16 + 4u and so
w="T4+4u+1t, > 1.

TABLE 13. w wheno =7,8B =0

01 2 3 4 5

7 11 15 16 21

u
to
0
118 12 16 17 22

(2) B=1 Thene =7+u+wv; and B = 7+ 2u + 2uvy; thus, 73 =
4(1 + 2u + 2v1). Hence, w = 2 + 4u + 4v1 — 9 + to.

If r =0 then v > 1 and w = 4u — 3.

If r >0and t3 > 0,73 = 0 then w = 4u + 1 + 2.

If r >0and ¢y > 0,3 > 0 then e = 10 4+ v and w = 4u + 5 + to.
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TABLE 14. w wheno =7,8B=1,r=0

u|l 23 4 5 6 7
wll 5 9 13 17 21 25
TABLE 15. w wheno =7,B =1

vw|0 1 2 3 4
2

o~

112 6 10 14 18
213 7 11 15 19
314 8 12 16 20
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2.5. graph.

The following figure is obtained by plotting (w, o).

Note that in Figure 1,there are many parabolas; these are defined by
y=a2’+3r+2y=2’+2+2y=2> -z +4y=2>—x+2,

FIGURE 1

We have the following inequality, which is closely related to the inequality
(1).
Theorem 4. Let g denote g — 1. If 0 > 7, then
o<wl+w +2+27. (3)

Here, vy =w — g and w; = Kg - D.
e The domain (I) is defined by y < 22 + 3z + 2,y > 2% + z + 2.
e The domain (II) is defined by y < 22 + 2+ 2,y > 2% — z + 4.

2.6. proof of the inequality (1) in the case when v; < 3.

First, we consider the case when 1 < 3.

By the formula, we get w = 13/2 — 9+ 1t2 > 13/2 — 9.

Assuming o > 7, we distinguish the various cases according to the value
of B.
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(1) If B =0, then e > ¢ and
73 = (0 — 3)(2e — 6) > 2(0 — 3)2 > 8(0 — 3).

Hence,
w>T13/2-9>4(0-3)-9=40-21>T.
Thus,
w4+ 21
< .
7="

In particular,
o< (w+1)(w+2).

(2)IfB=1,thene—oc>2and B—6=2c—0—6>e—4>0—2.
Hence,

3= (0 —3)(B —6) > 5(c —3).

Thus
T3 50 — 33
>wp=—-9> .
W= Eo Ty
Therefore,
o< 2w -5|- 33.

If w =1 then o < 7. Assume further that o = 7. Then e = 9 and the type
is [7%9,1;1].

Moreover, w? + 3w + 2 — (2w'5"33) = 5“’2“53‘“_23 >0 for w > 1.

Hence,

2w+ 33

w? + 3w +2 > ( ) >0

JIf B >2 thene—20 =e—Bo+ (B —2)o > (B—2)o >0 and so
6=2e—Bo—6>e—62>20+(B—2)o— 6. Hence,

(3
B —

3=(0—-=3)(B—-6)>2(c—-3)(c—3)+ (B—2)o(c —3)>8(c—3),
and moreover,
w>13/2—-9>4(0—-3)—-9=40-21>T1.
Thus,
w4+ 21

< .
7=77

In particular,
o< (w+1)(w+2).



RELATIONSHIPS BETWEEN BIRATIONAL INVARIANTS w AND ¢ OF ALGEBRAIC PLANE CURVE$3

2.6.1. exzamples.

If the type is [7*9,1;2"] then g =27 — 7, D?> =77 —4dr,w =1+ 1.

If the type is [8 * 12,1;4"] then g = 49 — 67, D? = 128 — 167, w = 16 — 2r.

When r = 8, we get x[D] = 1. This contradicts the hypothesis that
k[D] = 2.

When r =7, k[D] =2 and w = 2.

When r = 6, we have x[D] = 2 and w = 4.

Moreover, if the type is [8 * 12, 1;47, 3"3] where t3 = 1,2, then w = 2.

If the type is [8 * 12,1;47, 33, 2] where t3 = 1,2, then w = 3.

Finally, if the type is [8 * 12,1;4°, 3!3] where t3 = 1,2, 3,4, then we have
w =4.

2.7. proof of the inequality (2) in the case when r = 0.
Assume that r = 0. Then w = 3 — 9 and g = 5 — 1. Hence,
T3 —T1

wlzw—ng—S.

But, 73 — 71 = —2B’ + 16, where B’ = 20 + B. It is easy to check
e if B # 1,then B’ > 4o0;
e if B = 1,then B’ > 30.
By using B', we have w; = —B' , wi(w1+1) = B/(B'~1) and 29 = 0 B—B'.
Thus,
witw +2429=(B" -1 +14+0B > 50%
2.8. lemma. We shall use the next lemma:
Lemma 1. Suppose that (S, D) is minimal.
(1) If B=0 or 2 then 20G — (0 —2)D? = (2D +0Kgs)-D >0 .
(2) If B =1 then either (2D +0Kg)-D >0 or (3D +eKg)-D > 2.
(3) If B > 2 then (2D + 0Ks)-D > (e+e— 0B — 20)o > 0(B — 2).
(4) If B > 3 then (2D + 0Kg) - D > 0?; in particular,
20G — (0 — 2)D? > o2, Hence, ow; + 2D? > o2

Proof. From 0Ky + 2C ~ (2e — o(B + 2))F, it follows that

(2D +0Ks) - D = (2C + 0kKo) - C + Y _ (0 — 2v5)v;

i=1
=(e4+e—0B —20)0+pY +2Z
> 0%(B - 2).

where X =37, V? V=37 ,vjand 2 =11Y — X. Thus,

(0Ks+2D)-D > (6Ky+2C)-C > o*(B — 2).

From this one can verify (1),(3) and (4).
As for (1), when B =1, if (2C + 0Ky) - C = (2e — 30)o < 0 then
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(3D +eKg)-D = (3C + eKy) - C + i(e — 3v))v;
j=1

= (3C 4+ eKy)-C+ (p+u)Y +3Z
30 — 2¢)An - (000 + €Fe) + (p+u)Y + 32
30— 2e)(e — o)+ (p+u)Y +3Z
30— 2¢)(u+v1) + (p+u)Y + 32
u+ v > 2.
Here note that 6—31/]‘ =o+u+v—3vj =0-2vj+u+rv;—v; > 0. Q.ED.

(
=
=
(

2.9. proof of the inequality (1) in the case when B > 3. Suppose that
B > 3.
Then by Lemma 1(3),

in other words,

2
w1 >0 — —D2
o
If D? <0, then
2
wy > o— Zp? >0
o
Hence,
w=w1+9g=0-—1.
Therefore,

oc<w+1.

If D? > 0, then since w = 35 — D? > 0, it follows that 35 > D? and so
-6
w=wi+g>o+2—D?>o0.
o

Thus 0 < w. Q.E.D.
In particular,
o< (w+1)(w+2).

2.10. proof of the inequality (2) in the case when B > 3.
By Lemma 1 (3), 209 — (¢ — 2)D? > o2. From this, it follows that

_ o —
2g — (

Replacing D? by w; + 2g, we obtain

2
)D? > o.
o

4qg o-2
4g
o

We distinguish the various cases according to the signature of w;.

wlza.
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(1) Suppose that w; > 0.
If g = —1 then w; > o0, and hence,

Wt w +2+20=wi(w +1)>0?+0>49 +o0.
If g > 0 then 47§+w1>0.
From this, we get
10g

.
w%+w1+2+2§—(—g+w1)=w§+2+7

7
Thus the inequality (2) is obtained.

>2>0.

(2) Suppose that w; < 0. Then

— >0
7 - ’
thus

43 10
w%+w1+2+2§—7g:w%+w1+1+79+1>0.

Hence,
.
w2+ w + 2+ 27 > 79

> 0.

In that follows, we suppose that B < 2.

3. FUNDAMENTAL EQUALITIES

By
2w=(D+3Kg) D,2wy = (C + 3K)j) - C,
and
29 =(D+ Kg)-D,2g, = (C + Ky) - C,
we get

» Vilv; —3
® w=uwp— P i _](72 )7

vi(v; —1)
o g=go- T, LA

By putting X =377, I/Jz and Y =377, v;, we obtain
o 2w — 2wy = —X + 3Y,
e 2g—go=-X+Y.
Thus
o X =390 —wo— 39+ w,
° Y:gg—wo—g+w.
However, from wyg = % — 9 and gg = 5 — 1, it follows that
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® g)— wy = ‘§~+20’
e 390 —wy = Bo.
Consequently we obtain the next equalities:
e X = ga +w — 37,
oY =B+204+w-—7.

3.1. two invariants.

We shall compute two invariants B + 20 and Bo by examining the fol-
lowing cases according to the value of B.

(1) B=0. Then 0 = 2v; + p,e = 0 + u for some u > 0 and

° §+20:81/1+4p+2u,
e Bo = 8v2 + 2uy(4p + 2u) + 2pu + 2p°.

(2) case B = 1. Then 0 = 214 + p,e = 0 + 11 + u for some u > 0 and

° §+20:8V1+3p+2u,
e Bo = 8V% + 211 (3p + 2u) + 2pu + p°.

(3) B =2. Then 0 = 2v; + p,e = 20 + u for some u > 0 and

. §+20=81/1+4p+2u,
e Bo = 8V% + 2v1(4p + 2u) + 2pu + 2p>.

Defining w = 4 — §1p,we get w = 4 if B # 1. Further, w = 3 if B = 1.
Introducing an invariant k by k = wp + 2u, we have
° §+20:8V1+k,
e Bo =82 + 2kvy + p(k — 2p).
Proposition 2. Letting k denote wp + 2u, w being 4 — 61, we have the
following fundamental equalities:

o X =82 + 2k +k+w — 27,
o Y =8 +k+w.

3.2. invariant Z. Following Matsuda([9]), we shall compute 1Y —X, which
we denote by Z.
By Z=unY - X=3%7_,vj(vi —v;) > 0, we have

0<Z=wm(w-g—k)—k—w +27. (4)

Here k = kp — 2p2.
Defining the invariant A to be k — wy, we obtain

0§I/1Y—X:—I/1)\—]N€—wl+2§.
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Hence,
i< —k—w +2g. (5)

3.3. case in which B > 3.
In the case when B > 2, by By we denote B — 2. Then e = Bo +u =
Byo + 20 + u for some u > Oand§:2e—Ba:Bga+2(a+u).
Moreover, Bo = Boo? + 2(0 + u)o and so

. §+20'=BQO'+8V1+I€./ .
e Bo = Byo? + 81/12 + 2kvy + k.
Thus, we obtain the following fundamental equalities:
o X = Byo? + 802 + 2k + k +w — 27,
e Y =Byo+ 8 + k + wy,
where w; = w — 7. Further , we get
0< Z =Boo(vy —0) — ki + (1 — Dwy + 29 — k,

and
BQO’(U — 1/1) § —kI/l + (V1 - 1)&)1 + 2§ — k.
If B > 3, we have

o(oc —v1) < Byo(o—v1) < —kvy + (11 — 1wy + 29 — k. (6)
Hence, the following is derived:
Proposition 3. If B > 3,then
20 < oo —11) < (v — Dwy +237.
3.3.1. examples.

Example 1. Suppose that the pair has the type [8 * 24, 3;4"]. Then B =24
and g =77 — 6r.

Suppose that 77 — 6r > 0. Then D? = 16(12 — r). When r = 12, we have
g=4,w; =8 and w = 12.

3.4. an estimate of w.
Theorem 5. If B > 3 and v1 > 4,then w > 12.

Proof. Supposing w < 11 ,we shall derive a contradiction.
From g = w — w;, we get by Proposition 3

21/% < (1 —Dwi +2(w—wi);
thus

20 — (1) — 3wy < 2w < 22.
By v1 > 4, we derive wy > 10. Actually, since wy > 0, it follows that
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207 — 22
< —— <

10 wi.

vy — 3
Since w < 11 and wy > 10, it follows that
11>w>10+7. (7)

Hence, g =1 or 0 or —1.
By Lemma 1(4), we have ow; + 2D? > 02. Thus

2D?
w1 Z g — T, (8)

which will be used.

We shall distinguish the following cases according to the value of g.

1)7=1.
Then w = 11 and w; = 10. But from w; = 29 — D?, we get D? = —8.
From the inequality ( 8)
2
10 =wy 20—£:0+E,
o o
it follows that o = 8.
By making use of the inequality ( 6) , we obtain k£ = 0. The fundamental
formulas turn out to be
o Y =0+ 8 +k+ wy,
° X:02+8V%+2k1/1+w1 —29.
From these,

Z=o(r1—0)+ (1 —Dwi +27=-32+30+2=0.
Thus r =14 and ¥ = 0 + 8v1 + k + w1 = 50 = 4r, which has no solution.

(2)g=0.

Then w = w; =10 or 11.

Assume w = 10. But from w; = 2g — D?, we get D? = —10.
From the inequality ( 6)

2
10 = wy 20—£:0+@,
o o
it follows that o < 8, a contradiction.

Assume w = 11. But from w; = 2g — D?, we get D? = —11.
From the inequality ( 6)

2D? 22
N=wzo0——=0+—,
g g

it follows that o = 8 and v; = 4.
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Further,by the inequality (6), we get k = 0 and so Z = o(v1 — o) + (11 —
Dwi+2g=-32+3-11=1
But Z > vy — 1 = 3, which implies a contradiction.

(3)g=-L

Then w; = w+ 1 > 10. Hence, w > 9.

Therefore, w = 9,10,11. Corresponding to these values, we have D? =
—12, —13, —14 since w = —3 — D2,

But from w; Zo—%,weget w1=1020+%0rw1 =11 20+%0r
wp =12>0+ %,

Therefore, we obtain o = 8 and w; = 12 B

Further,by the inequality ( 6), we get k=0 and so Z =o(v1 —0) + (11 —
Dwi +2g=-32+3-12—2=2 > v_1 =3, a contradiction.

3.5. case in which w = 12. Supposing that B > 3 , v1 > 4 and w = 12,
we shall compute the types.
Byw =w—-9g=12—-9 <13,

20 — (11 — 3wy < 2w = 24.
By v1 > 4, we derive 1 =4 and § < wj =12 — 7.
Hence, g < 4.

(1) g = 4. Then w; = 8 and w; = 8 — D%. Hence, D? = 0 and

2D?
§=w >0——=0>8.
o
Therefore, o0 = 8 and k£ = 0. Furthermore,
Z=0(i—0)+ (1 — Dw + 27 = 0.
Then ¥ =8+ 8-4+4 8 =48 = 5r. Hence, r = 12 and the type turns out
to be [8 * 24, 3;4!2].
(2) g=3. Then w; = 9 and 9 = w; = 6 — D2 Hence, D? = —3. It is easy
to derive k = 0 and
Z=o(r1—0)+(m—Dwi+2g=1>1 —1=3,
a contradiction.
(3) g = 2. Then w; = 10 and 10 = w; = 4 — D?. Hence, D? = —6. It is
easy to derive k = (0 and
220(1/1—0)4-(1/1—1)&}14—2?:2Zl/1—1:3,

a contradiction.
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(4) g = 1. Then w; = 11 and 11 = w; = 2 — D?. Hence, D? = —9. It is
easy to derive k = 0 and
Z=0(w —0)+ (1 — 1w + 27 = 3.
Thenv; =4andts =1. By Y = 8+8-4+11 = 51 = 4t4+3t3+2ty = 4t4+3.
Hence, t4 = 12,7 = 13 and the type turns out to be [8 x 24, 3; 412 3].
(5) g = 0. Then wy = 12 and 12 = w; = —D?. Hence, D? = —12. It is
easy to derive k = (0 and
Z=0( —0)+ (1 — Dw + 27 = 4 = 3t3 + 4t,.
Then 9 =1.By Y =8+48-4+12 =51 = 4t4 + 1, which has no solution.
(6) g = —1. Then w; = 13 and 13 = w; = —2 — D?. Hence, D? = —15. It
is easy to derive k = (0 and
Z =0 —0)+ (11 — Dwy + 27 =5 = 3t5 + 4to.

This has no solution.
Therefore, we obtain the next result.

Proposition 4. If B > 3, vy > 4 and w = 12,then the type becomes
[8 * 24,3;42] or [8 * 24,3;4'2 3.
4. ESTIMATE OF k IN TERMS OF w
We shall prove the following estimate of k.
Proposition 5. If B <2 ,0>7 and vy, > 3 ,then k < w.

Proof.
From proposition 4, it follows that

0§ZN=V1(w—§—k)—l~§—w1+2§

)
= —kun + (I/l — 1)(&)—?) +2§—]~€
= -k + (I/l — 1)w+§(3 — I/l) —k
< —kvi + (v - Dw+7g3 — 1)

Hence,

However, when g = —1, we get

kv < (1 — Dw+1q — 3.
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Hence,

3+ w

kEk—w<l1l- 1.

Therefore, k¥ < w. Thus , introduce an invariant ¢ by i = w — k > 0.

4.1. case when k = w. Assume ¢ = 0. Then k = w and by the previous
argument, g = —1.~ B
Supposing that Z > 0, we get Z > v; — 1. Hence,

1/1—1§3N=—kV1+(V1—1)k+§(3—V1)—k
:—k+§(3—u1)—l~<:.

Thus g = —1 and so

v—-1<—-k+v, -3 -k

This is a contradiction. Therefore, Z =0.

4.2. a formula for 7. In general, in the case when i > 0,9 = —1 and Z = 0,
we obtain the following formulae from the fundamental equalities (3):

o wi =1+ 14k,

o r—8nm=ktw =2k+i+1, )

o (r—8)v2=2kvi +wi +k+2=2kvi +k+i+k+3.
Then r > 9 and

2k +1+1
m=——g )

From
(r—8)v2=2k+i+ v, =2k +k+i+k+3,
it follows that
(i+ D) =k+i+k+3,

and
k+i+1 -
i+ ks,
r—38
Hence,
(i+1)2k+i+1)=(r—8)(k+i+k+3). (10)

Furthermore, we obtain

E(2i+10—7) + (i + 1)? = (r — 8)(k + i + 3). (11)
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4.3. case in which i = 0. Suppose that i = 0. From the formula (11), it
follows that
k(10 —7) +1=Fk+ 3.
Hence, r =9 and k+1=k+3; k =k +2.
Therefore, from k = k + 2 = p(k — 2p) + 2, it follows that either 1)p = 1
or2) k=2p+2,p#1.

In the case when p = 1, we have vy = 2k + 1 and k = w + 2u, where
w=4- (513.

IfB=1thenk=3+2vando=2v1+p=4k+3;e=04+v1+u=
6k +u + 4.

Thus B = 2¢ — 0 = 9k + 2. The type becomes [(4k + 3) * (6k + u +
4),1; (2k + 1)%], where k = 3 + 2u.

Conversely, if the minimal pair (S, D) has this type, then g =
9(2k+1)k = 0 and D? = 0B—9(2k+1)? = —k—3. Thus w = —3—(
k.

(c-1)(B-2)

2
k—3) =

IfB=0then k=44+2vandv; =2k+1=944u,0 =21 +p=4k+3 =
19+ 8u; e = 0 +v1 +u =19 4+ Yu. The type becomes [(19 + 8u) * (19 +
9u), 1; (9 + 4u)?].

Conversely, if the minimal pair (S, D) has this type, then ¢ = 0 and
w=4+2u=k.

In the case when k = 2p + 2,p # 1, we have either p =0 or p > 0.
Ifp=0thenu=1and k=2. Thusvy =2k+1=5,0=10,B=0,2.
If B =0 then the type becomes [10 * 11;5°).

If p > 1 then k = 2p 4+ 2 = wp + 2u, from which it follows that p = 2,u =
O,w =3,k =6and B = 1. Moreover, v = 2k + 1 = 13 and ¢ = 28 and
e = 41. The type becomes [28 * 41;13%].

Conversely, if the minimal pair (S,D) has this type then ¢ = 0 and
D?=—-9and w=06=k.

4.4. case when £k = w — 1.

5. CASE IN WHICH A > 1

First we shall prove the inequality (2), from which the inequality (1) will
be derived later.

6. PROOF OF THE INEQUALITY (2) IN THE CASE WHEN k > 0

Suppose that Z= 1Y — X > 0. Then
Z > vy — ) >y — 1.
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Recalling that

Z=0Y —X=-u)—k—-w +27
we obtain
v —1< - A —k—w + 27,

where A = k — wi.
Thus,

v+ —1< —]Nﬁ—wl+2§.
Since 1 — A< 0and p— k< 0, it follows that

o=21+p<(Q-Nv1+1+p—k—w +2g

1—w + 23.
Therefore,
Wi tw +2+29—-0> (w +1)>% (12)
Hence,
Wit w +2+27> 0.
7. CASE IN WHICH Z = 0
Suppose that 1Y — X = Z=0. Then 1y = --- = vy and hence, X =

rv2,Y =rvy. Thus

o (r—8) v} =2k +k+w — 27,
° (r—8)u1=k+w1.

Recall that A=k —w; > 1.

7.1. case in which £ > 0.
(1) Suppose that r > 9. Then vy < (r — 8)v; = k + wy. Thus,

v <k+ wi.
Hence,
o =2 +p<2k+ 2w +p.
Since
A< A < —k —wy + 29, (13)
it follows that
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witw+24+2—0
>w w4+ 2427 — (2k 4 2w + p)
>w? b w2+ A+ k4 wy) — (2k + 2w1 + p)
>w? +wi 42+ 2k —wi + k) — (2k + 2wi + p)

:w%—2w1+1+1+l~€—p
>1.

Therefore,if v; > 2, then

wi+w+2+2G—0>0.

(2) Suppose that r = 8. Then

. 0:(7“—8)1/12=2k1/1+]~€+w1—2§,
e 0=(r—8)u1y =k+w.

Hence, wy = —k < —2. Furthermore, A = k — w; = 2k and

—k— w1 + 27
21/1=—k ;
thus,
—k—w +27
o=2v1+p=— kl g+p

Moreover, from 0 = 2kv; + k + w1 — 2, it follows that

2g =2k + k + w

=2%kvy +k—k
=k(201 — 1)+ k
>3k.
Since
k  2p? 9 5. _ 5p?
— = - _ >
5 % o )z 5 >0
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we obtain
—k—w +2g
w%+w1+2+2§—0:w%+w1+2+2§—(#+p)

1. 2p?
=k(k—-1 1+29(1 ——-) — —
(k=1)+ 14250 - ) - =
1, 2p?
> k(k—1)+1+3k(1— —) — =
k k

ko 2p?

D o B

z +2 %

> 0.
Thus
W+ w+24+2G—0 > 0.
(3) Suppose that r < 7. Then letting s be 8 —r > 0, we get

o svl=—2kv; — k —w + 27,

o sv; = —k —wi.
Since 11 < sv; = —k — wy, it follows that
o < =2k — 2wy +p.
Moreover,

Wt w +2+4+20—0>w+3w +2+29+2k—p
>wi(3+w)+2+29+ (2w —1)p + 4u.

The function defined by
F(z)=z(34+2)+2+2g+ (2w — 1)p+4u (14)
has minimal values at x = —1 or —2. By
F(-1)=F(-2)=-2+2+25+ 2w — )p+4u > (2w — 1)p + du — 2
F(z) >0if k > 0.

7.2. case in which k£ = 0.
Then

o (r—8)v¥ =uw —2g,

o (r—8)v =wi.
Recall that A = —w; > 1. Then g —w = —w; > 1l and so g > 0,7 < 8.
Letting s =8 — r, we get

° suf = —w; + 29,

® SV = —Wwi.
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Then 0 = 2v; = % and so

2w
w%+w1+2+2§—a:w%+w1+2+2§+T1

s+ 2 s+ 2

2 — 2
= 2+ 2g —
@+ 25 2429 - (505
which is positive.
If s =1 then 49 .
_ S D) _
2+2g — =2¢—->1.
t2 (5= =2%-72

If s > 2 then % < 1. Hence,
Wi 4w +2427 > 0.

8. CASE IN WHICH A <0

Suppose that A =k — w+ g < 0. In other words, w — g > k = wp + 2u.
First we note the following lemma, which is a bit sharper result than the
lemma proved by Matsuda.

8.1. Lemma due to Tanaka and Matsuda.

Lemma 2 (Tanaka and Matsuda). Let m,u1,- -,y be integers such that
m > py > > e 2 2 and that Z;Zl pj = sm+ B for some integers s > 0
and B > 0.

Putting X = 37, u?,Y = 371 iy, we obtain Y = sm+ f and V =
sm? + B2 — X which satisfy that

e V >0.

o IfV =0 then either 1) m =y =+ = pp—1 > pyr and s =r—1,4 =
pr o 2)m=py=---=p, and s=r—1,=m.

o If V >0 thenV > 2.

o IfV =2thenm =py = = pr2 > 1 = pp =m—1s =

r—1,08=m—2.
o IfV >2thenV > 4.

o [fV =4thenm=p =" =prp9>fpr1=m—1,u =m—2,5=
r—1,08=m—4.
Proof.

(1) Assume that f§ > m. Dividing 8 by m, we have ¢,r¢ such that
B=gm+r9,0<rg<mandgq>1 ThenY =sm+ = (s+q)m+rg and
let 8" = s+ ¢. Thus

Vi=sm?+r2 - X,V =sm?+p° - X.
Hence,
V-V =sm?*+ %= (s'm?+r2) = —gm*+(qgm-+ro)>—r2 = gqm((g—1)m+2rg) > 0.

If V=V'then q = 1,79 = 0. In this case, § = m and Y = sm +m =
(s + 1)m.
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Otherwise, V> V' +2m > V' +4. If V. =V' + 4 then m = 2.
Thus we assume § < m.

(2) If 43 = m, then replace m by m — 1 and r by r — 1,respectively. After
such replacement, V is invariant. Hence, we may assume that p; < m and
we shall prove the lemma by induction on 7.

(3) If r =1 then s = 0 and p; = f; thus V = 0.

(4) When r > 1, (i) we suppose that p1 + po < m. Then letting p} =
[y + po, we define X’ and Y’ as follows:

o X =t B
Since Y =Y’ = sm + f3, from induciton hypothesis,it follows that
Vi=sm?+ 2 - X' >0,
But V = sm? + B? — X satisfies that
V—V'=X' =X = (u +p2)” = (] +p43) = 2mp2 > 8.

(ii) Assume p; + pg > m + 1. Then 2m — 2 > p; + po and putting
ph=mym—2>ph=p1+ pe —m > 2, we define X' and Y’ as follows:
X
o Y'=py+ 35y
Then V' = (s — 1)m + B and X = % + p3 — p + X'. By induction
hypothesis, V' = (s — 1)m? + 8% — X' > 0 and

V=sm’+-X, Vi=(@-1)m?>+p>-X".
Thus
V-V =m®+ X' = X = (1 + pg —m)* +m® = (uf + pi3).
Note the following lemma.

Lemma 3. Let a,b,m be nonnegative integers satisfying that
2<a<m—-1,2<b<m-—-1,andm+2<a+0b
Then
m? 4+ (a+b—m)? > a® +b* + 2.

If the equality holds, then a =m — 1,b=m — 1.

Proof. Define a function F(z) = m? + (z + b —m)? — (22 + b* + 2) =
m?+2(b—m)x+ (b—m)?—b?>—2, which is a liner function. Since b—m < —1
and z < m — 1, it suflices to show that F'(m — 1) > 0. However, F(m —1) =

2(m —b—1) > 0. Furthermore, if ' (z) =0 thenz =m —1 and b=m — 1.
Q.E.D.
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Applying the lemma, we see that V — V' > 2. And if V — V'’ = 2 then
p1 = p2 =m — 1.
(iii) Assume g1 + p2 = m. Then Y and X" defined below
o X'=Ygm; =s'm+p,
T
o YV'= Zj:3 Ky
satisfy that Y = m+Y" and X = p?+p2+X". Moreover, Y = s'm+p'+m =
sm+ .

Then we have s = s'+1, 8/ = 8. Futher, since m? — (u3+p3) = 2u1p2 > 0,
it follows that

V=sm?-X
=s'm? +m? — (42 + pd+ X"
= V" +m® — (uf + )
— V”+2H]_H2
>V"+8.

(iv) Assume pg +ps =m+1. ThenY =m+1+Y" =sm+p'+m+1=
sm+ .
Ifg<m-1thens=s+1,=p0+1. ThusY =m(s'+1)+ 4 +1 and

V=m?s+1)+(f+1)?-X
=s'm?+m? +p?% — (X" +p2+pud)+ 28 +1
=V"4+m?+26 +1—p2 — i3
SV (py 4 po — D)2+ 1 — pd — i3
=V" + 2u1p9 — 2p1 — 29 + 2
=V"+2(u1 — 1) (2 — 1)
>V +2.

If V=V'+2 then uy = ps and ' = 0.
Moreover, if 8/ =m — 1 then Y = m(s’ + 2). Thus

V=m?s'+2) - X =m?(s' +2) — (X" + 11§ + p3)
> V" 4 2m? — pif — pj
Vbt i
>V"+8>0.
Here, m? — p2 > (u1 + 1)? — p2 = 2u; + 1. Q.E.D.
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9. PROOF OF THE INEQUALITY (2) WHEN A <0
9.1. case in which £ > 0.
By applying Lemma of Tanaka and Matsuda to the following

. X:8y%+2k1/1+l~§+w1 — 23,

[ Y:8V1+k+w1,
we see that V = 82 + (k + w1)? — X > 0. Hence,

V = (k+w)? — (2kv1 + k + wy — 29) > 0.

Thus

2k < (k + w1)2 - (iﬂ + w1 — 2?)
Assume k£ > 0. Then

(k+w)? = (k +wy —29) + kp

o=2r1+p< .
Furthermore, we get
oc=2v1+p
o (bt w)? = (k+w —29) +kp
- k
_(k+w1)2+2p2—w1+2§
N k
wi? —w + 2p® + 29
kw4 AT T
k

9.1.1. ezample.
Example 2. If the type of (S, D) is [2v1 * 2v1;v]] then

I/l(I/l — 1)

5 D? = (8 — )2

g= (2 —1)? —rx

Hence, w = (S*T)V;M‘

TABLE 16. w

r |7 6 5
4!

412 4 6
515 10 15
619 18 27
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9.2. case in which p > 1.

2
Suppose that p > 1. Then k > 3p > 3, so we have 2% <
that wy > k, we get

ell\V)

k. Recalling

2 2 _ 2g
o< (1+§)k+2m+wlTwl+g
2 wi? — w1 +29
<(B3+2 St
< ( + Q)LU1 + A
10 wi? —wi +29
< (= g #wres
< | 3 Jwi + 3
w12 + 9wy + 29
- a—
Therefore, we obtain
Proposition 6. Ifp > 1 then
2 2 29
o< (1+§)k+2w1+wlTwl+g.

In particular,

w12 4+ 9wi + 29
ol —MMMMMMM.

- 3

However, we shall show that

w12 + 9wy + 29

3
This is equivalent to the following

<w? 4w +2+27.

w1 + 9wy + 27 < 3(wi? + w1 + 2+ 29).

Defining a function F(z) to be 2 — 3z + 3+ 27, we see that the difference
of the both sides of the above inequality is written as 2F (w;).
By wi > k > 3, to verify the above inequality it suflices to show that
F(3) > 0. But
F(3)=3+2g> 1.
Thus we have established that

W+ (1-20w+7+7+1l=w’+w +2+27
2 —
> w1” + Ywy +Zg+2F(3)
3 3
6+ 4g

> .
> o+ 3

Hence,

4
w2+(1—2§)w+§2+§+120+2+?g>0.
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9.3. case in which p=0,u > 1.
Suppose that p = 0. Then k = 2u > 2, so we have by w; > k = 2u,

(2u + w1)2 —wy + 29

=21 <

2u
2 20
2u
wi? —w +27

< 3w + 2

Next, we shall show that

2 29
ELETES

This is equivalent to the following

<w?4w +2+27.

wi? —wi + 27 < 2wi? — 4w + 4 + 43.
But

2(,4}12 — 4w +4+4g — (w12 — w1 + 2?)
=w? — 3wy + 4+ 27.
Since wy > 2u > 2, it follows that

wi2—3w +4+25>2+29> 0.
If the equality holds, then g = —1,w; = 2. Note the following lemma:

Lemma 4. If p =0 and wy =k then 29 > w;.

Proof. By the fundamental equalities :
° X=8I/%+2k1/1+wl — 29,
o Y =811 +2k
we get 0 < 1Y — X =29 — w. Q.E.D.

Then wy = 2 implies k£ = 2 and so 2g > w; = 2. Therefore,
wi2— 3w +4+25=2+27> 4.
Thus, we have established if w; = 2, then
wi’+w +2+25>0+2

If w1 = 3 then
wi2—3w +4+2=4+25> 2.
If the equality holds, then ¢ = 0 and k£ = 2,u = 1. By

o X=8V%+2k1/1+w1—2§=81/%+4V1+5,
oY =8y +k+w =81 +5
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we get 0 < 11Y — X =1y — b; thus, v; > 5.
From

w12 —w; + 29 _
— =
it follows that 1 < 5; hence v1 = 5. This implies that 1Y — X =11 —5 = 0.
Hence, v; = 5. Thus the type of the pair is associated with [10 % 11;5"].
By g =90—-10r = 10(9 —r) = 0, we have r = 9, w = 2,0 = 10, and
wi? 4+ w1 + 2 + 2g = 12 Except for this type, we obtain

10< 0 =21 <3w; + 11

wi’+w +2+25>0+4

10. PROOF OF THE INEQUALITY (2) IN THE CASE WHEN A < 0 AND k=0

Suppose that k£ = 0, namely, p = u = 0. As before, A = —w + g < 0.
The fundamental equalities imply
o X =82 +w — 27,
e Y =8 +wi.
Following Matsuda([9]), let ¢ denote t,,. Then let X' be ZV]‘<V1 v;% and
Y'= ZV]‘<V1 v1. Hence, X = X' + t11? and Y =Y’ + tvy. Therefore,
o X' =(8—-t)v+w — 27,
o V' =(8—1t)r; + ws.

10.1. case in which ¢ > 8.
If t > 8 then let s denote 8 — ¢, namely s =8 — ¢ < 0. Thus
o X' —svi=uw —2g,
o Y — sy = wy.
Therefore,
X' — s — (Y —s11) = —27 < 2;
hence,
X' —Y' —s(i—-v) <2
By vy > 4, we get v? — v > 12. Hence,s = 0.i.e., t = 8 and if r > 8 then

2>X'-Y' >v(y—1) > 2 Thus X' = 4,Y' = 2,1, = 2,7 = 9 which
implies that the type is associated with [2v1 * 2v1; 18, 2]. Otherwise, 7 = 8.

Consequently, we have the following contradictory result:

If g = 1 then 7 = 8 and the type is associated with [2u7 * 2v1; 1§, But
then x[D] < 2, which contradicts the hypothesis.

If g = 0 then 7 = 9 and the type is associated with [2v1 * 2v1; 0§, 2]. But
again k[D] < 2, which contradicts the hypothesis.
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10.2. case in which ¢ < 8.
Thus ¢ < 8. Hence, s =8 —t > 0 and
o X' =svi+uw —2g,
o V' = s + wy.
Defining £(t) to be Z;“:El tj, we get

v1—1
s(im—1)<svy+w =Y = Z Jtj < (1 —1)e(t),

=2

and so

s < g(t).
By the way, from
(1 — Vw1 +27=Z > (1 — 1)e(t).
it follows that

Thus,

Proposition 7.

s <w+

~1. 16
- (16)

10.3. quadratic estimate. Following Matsuda([9]), applying the lemma
for m =v; — 1, since Y' = s(v; — 1) + s + wy, we have

V=s(1—1)*+ (s+w)>—X'>0.

Hence,
2 — 2 2
svi +w —2g = s(vr — 1)+ (s +wi)”.
Then, we get
2 - 2 2
svp +w; —2g < s(vy —1)7 + (s +wy)7,
and then ,
o=, < s+ (s+wp)® — (wr —29).
s
Thus,

2 —
— 2
0§5+2w1+1+w1—wl+g.

By Lemma of Matsuda and Tanaka,if V' = 0 in other words,the equality

holds, then we have two cases:

(1) s+wi=vi—landsoY' = (s+1)(r1—1),r—t =s+1. Hence,r =9
and the type is associated with [2vy * 2vy; 4, (1 — 1)1,
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(2) tyy-1=r—t—1=s—1=8—-t—1. Then r =9 and the type
is associated with [2v1 * 2v1;0%, (11 — 1)87%, 1,]. By computation, g = vy —
ve(vy — 1) /2.

10.4. case (1). In case (1), we have s + w; =11 — 1 and from

(s+1) (1 -1 =X'=s12 4w — 27
it follows that

20=1—-wv)(1 =209—-1t) = (1 — 1D (2s+2 —1y). (17)
This implies that
2w=2v1 —2+2g—2s

=211 —24+11(28+3—1v1) — 25— 2 — 25

=v1(2s+5—1) —4s—4

=11(21 — 2t — 1vy) — 36 + 4¢.

Thus we obtain

WZM—IS—KIQ—%. (18)

We distinguish the various cases according to the value of g.

10.5. case (i).

() 5= -1
Then

2= —95= (1 —1)(1n —2(9 —1)).

Thus, v1 = 2 or 3; in other words, 0 = 4 or 6.
This contradicts the hypothesis saying ¢ > 7.

10.6. case (ii).
(ii)) g=0. Then 2s +2 =v; and from s+ w=s+w; =v; — 1 =25+ 1,
it follows that

w=s+1=9—-t0=21 =4s+4.
The type becomes [(4s + 4) * (4s + 4); (25 +2)87%, (25 + 1)5t1].

Then
0=-2g= (1 —1)(1n —2(9 —1)).

Hence, v1 =25+ 2 = 2(9 — t); thus 0 = 211 =4s + 4.
But, since g = 0, it follows that w =w; =11 — 1 —s =5+ 1.
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TABLE 17. g =0

vy, o type

4 8 [8 % 8;47,3%]

6 12 [12%12;6% 57

8 16 [16 % 16;8%, 7]

10 20 [18 % 18;9%,8%]

12 24 [20 % 20;103,99]
14 28 [22%22;112,107]
16 32 [24x24;12'118]

— N W Oty ]+
EN N IS, IS JURE NCR T VA
[ HEN B~ NG, SIS JURN N1 )

10.7. case (iii).
(iii) g > 0.
By 2g = (11 — 1)(2s + 2 — v1) > 0, we get the bound of v;indeed,

4<v <25+ 1. (19)
Hence, s > 2.
TABLE 18. s =2
vy —1 6—v; g w type
4 3 2 3 4 [8x84°37
5 4 1 2 4 [10%10;5% 47
TABLE 19. s =3
vy —1 8—v; g w type
4 3 4 6 6 [8x%8;4° 37
5 4 3 6 7 [10%10;5°4%
6 5 2 5 7 [12%12;6° 5]
7 6 1 3 6 [14x14;7°,6%
TABLE 20. s =4
vy rv1—1 10— ¢ w type
4 3 6 9 8 [8x8;4% 3]
5 4 5 10 10 [10* 10;5%,47]
6 5 4 10 11 [12%12;6% 5%
7T 6 3 9 11 [14%14;74,6°]
8 7 2 7 10 [16 % 16;8%,7%]
9 8 1 4 8 [18%18;9% 8]
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TABLE 21. s=5

v nn—1 12— g w type
4 3 8 12 10 [8x8;49,3°]
5 4 7 14 13 [1010;53,49]
6 5 6 15 15  [12%12;63,59)
7 6 5 15 16 [14 % 14;73,69]
8 7 4 14 16  [16 = 16; 83, 8%]
9 8 3 12 15  [18 % 18;93,8%]
0 9 2 9 13 [20 % 20;103,99]
1110 1 5 10 [22%22;113,10°]
TABLE 22. s=6
vy m—1 14—y g w type
4 3 10 15 12 [8x8;47,37]
5 4 9 18 16  [10 % 10;52,47]
6 5 8 20 19 [12%12;6257]
7 6 7 21 21 [14%14;7%,67]
8 7 6 21 22 [16%16;8%77]
9 8 5 20 22 [18%18;9% 8]
10 9 4 18 21 [20 % 20;10%,97]
11 10 3 15 19 [22%22;112,97]
12 11 2 11 16 [24 % 24;122,117]
13 12 1 6 12 [26x26;13%, 127]
TABLE 23. s =7
v rm—1 16—-v; g w type
4 3 12 18 14 [8x8;4,37
5 4 11 22 19  [10*10;5,4%]
6 5 10 25 23 [12%12;6,5%)
7 6 9 27 26 [14% 14;7,6%]
8 7 8 28 28 [16*16;8,7%]
9 8 7 28 29 [18%18:9,8%]
10 9 6 27 29 [20 % 20;10,99]
11 10 5 25 28 [22%22;11,10%]
12 11 4 22 26 [24 %24;12,11%]
13 12 3 18 23 [26 *26;13,128]
14 13 2 13 19 [28%28;14,138]
15 14 1 7 14 [30 % 30;15,148

10.8. case (2). Second, we study case (2):
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(2) tyy-1=r—t—1=s—1=8—-t—1. Then r =9 and the type
is associated with [2v1 * 2v1;0%, (11 — 1)87%, 1,]. By computation, g = vy —
ve(vy — 1) /2.

10.9. case in which s = 1.
Assume s = 1. Then t =7 and g = 11 — v (v — 1)/2; thus,

o=2v; <1+ (1+w)?— (w — 29).
If g = —1 then we obtain

o=2v <(w+2)(w+1).

Here, the equality holds if and only if 0 = (w + 1)(w + 2).

-1
Moreover, v; = %

1,v,]. Then w = v, — 2.

(1) If v, = 4, then v = 6,the type is associated with [12 % 12;67,5,4].
2) If v, = 5, then vy = 10,the type is associated with [20 * 20; 107, 9, 5],
3) If v, = 6, then 1, = 15,the type is associated with [30%30; 157, 14, 6].

(
(
Ifgzo/theng:]_andylzw_'_l

:hence, the type is associated with [2v1%2v1; 1], vy —

o=211 <wHw+2.

If g =1 then we obtain

o =21 §w2+w—2.
If g = 2 then we obtain
o =21 §w2—w+4.
10.10. case in which s = 2. If s =2 and g = —1 then ¢ = 6 and we obtain

o — 9, _ (@t (w+3)+2 w? + 5w+ 8
= 1 = .
= 2 2

10.11. case in which s > 2. Here we shall prove the inequality (2). First
note the following

o=21

< s+ (s +w)? — (w1 —29)

S

P —
— 2
S

That is

2 20
0 <145+ 20 4 -T2 (20)

S
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2_ —
Subtracting 1 + s + 2w; + W from

w% ‘w1 +2+2g9
we have
(s —1)(w? —w; + 29 — s).
Therefore, if
w% —wi+29>s

then ) :
witw +2+29> 1+3+2w1+%1+29 > 0.
Thus, we obtain the inequality (2).
Therefore, assuming that
w? —wy + 27 < s, (21)

we shall derive a contradiction, referring to the inequality in Proposition 7.
As a matter of fact,

w%—w1+2§<w1+ —1.

vy — 1
Hence,

1
w%—2w1+2g(1+yl_1)+1<0.

Thus, g = —1. Then w; =w+1 > 3.

1
v —1

1
0>w%—2w1+2§(1+ﬁ)+1:(w1+1)2—2(1+ ) > 0.
T

This is a contradiction. Thus, the proof of the inequality (2) is complete.
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11. PROOF OF THE INEQUALITY (1)

We shall derive the inequality (1) from the inequality (2).
If g = 0 then the inequality (2) turns out to be the inequality (1). Hence,
we assume g > 1. From
W 43w+2— (W Hw +2+27) = (w—w)(w+w +1)— 27+ 2w
= g(w+ wy)
= g(2w - g)/
it follows that when 2w — g > 0, the inequality (1) is derived.
Hence, we assume
2w — 7 < 0. (22)
However,
4w — 2 = 4(3g — D?*) — 27 = 2(5g — 2D?).
By Hartshorne’s lemma, we have either (1) |2D +o0Kg| # 0 or (2) B =1
and |3D + eKg| # 0.

11.1. case (1).
In case (1), we have (2D + 0Kg) - D = 20G — (0 — 2)D? > 0 and then

—1
55—2p?> 2—10p2

20
(i) If D? < 0 then 5g — 2D? > 57 > 0.
(ii) If D? > 0 and o — 10 > 0 then
-1
s7—op?> 2102 5 .
g

Thus we may assume o < 10. Thus in order to prove
o< w?+3w+2

it suffices to assume that w = 1. Recalling that 7 < o < 10, we have
w; =1—7gand

Z=—kv + (1/1 - 1)(,4}1 + 2g
= —kl/l-l-(ljl - 1)(1—§)+2§
=un(l-k—g)+3g—1.

If vy = 3thenp =0—6 > 0,k > 0and Z = 3—3k—1 < 0, a contradiction.
If v =4 then p = 0 — 8 < 1. But from (22),it follows that § > 2w = 2.
Therefore,

Z=4-4k-g-1<0.
Hence, k = 0,p = 0 and o = 8. Moreover, Z= 4—-g9g—-1=0.
By the way, from Z = 0, it follows that g = 4 and g = 49 — 64 = 4, which
has no solution.



40 SHIGERU IITAKA GAKUSHUIN UNIVERSITY

11.2. case (2).
In case (2), we have (3D +eKg) D = 2eg — (e —3)D? > u+v; > 0 and
then

N 2+(e—9)§.
- e—3
Moreover,
__e—11_
2w—9 > g
e—3

Hence, we may assume that e—11 < 0. However, 10 > e = o+u+v; > 0+3.
Thus, 1 =3,0 =7,k > 0. Finally,

Z=-3k+2(1-9)+29=2—-3k<0.
This is a contradiction. Q.E.D.

12. AN INEQUALITY FOR CURVES WITH g > 0
Namely, we shall verify the following

Theorem 6. If 0 > 7 and g > 1 then
o< w4 w+2 (23)
except for the type [T+ 9,1;1]. In this case, 0 =7 and w = 1; the right hand
side s 4.
The right hand side of the inequality is obtained from that of the next
inequality after putting g = 1.
o <wi4w +2+27. (24)
Proof. May assume that g > 2. By

Wt w2 (W tw+24+27) =(w-—w)(lwt+w +1)—27

if 2w > g then
CHwt2> w4t w +2+27> 0.
Note that 2w — g = 55 — 2D? — 1.
We use the next lemma.

Lemma 5. If 0 > 13 then 5§ — 2D? — 1 > 0; hence 2w > g.

Proof. Since (S, D) is minimal, by Hartshorne’s lemma, we have either
(1) 2D+ 0Kg| #0 or (2) B =1 and |3D + eKg| # 0.
In case (1), we have (2D + 0Kg) - D = 20G — (0 — 2)D? > 0 and then
-1
57— 20> 202
o

We distinguish the various cases according to the signature of D?.
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(i) If D? < 0 then 55 — 2D? > 5g > 5. Hence,
2w—g=>5g—2D% > 1.
(i) If D? = 0 then 55 — 2D? = 57 > 5. Hence,
2w—g=2w—7g=>5g—2D*=57> 0.
(iii) If D? > 0 then
010
g

55 — 2D? > D? > 0.
In case (2), we have (3D +eKs) - D = 2eg — (e — 3)D? > u+ vy > 0 and
then
- 15
57— 2D > S 2 p?,
2e
Bye—oc=vi4+u>rv,wegete>o+22>16.
Hence, we are done. Q.E.D.

12.1. final case.
We shall show that when o < 12 and g > 0,

o< w +w+2.

Actually, if w > 3, then w? + w + 2 > 14.

However,if w = 2 then w? + w4+ 2 = 8 and by the list of types with w < 2
in the appendix, we obtain 0 = 8 if g > 1.

Last, if w = 1 then the type turns out to be [7 %9, 1; 1].

Note that if w? + 3w+ 2 = o then 2gw; + G2 +g = 0; hence either 1) g = 0
or 2) g =1 and w; = 0. In the last case, w? + wy + 2 + 27 = 2 > o0, which
contradicts the hypothesis saying o > 7. Hence, the proof in the case when
g = 0 is complete.

13. MATSUDA’S INEQUALITY

Replacing wy by a — 27, from o < w? + w; + 2 + 2g, we obtain

o< a4+ (1—-49)a+4g% + 2. (25)
Then
o +5a+6 — (o + (1 — 4g)a + 45° + 2)
=4g(a+1-7)
=4g(w+1)
> 8y,

since @« — g =w > 1.
Therefore, we get

a2+5a+620+8920,
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FIGURE 2

provided that o > 7.

13.1. case in which g > 0. We shall show that if g > 0 then 0 < o?+a+2.
This was first proved by Matsuda ([9]).
As a matter of fact, whenever g =g — 1 > 0, we get

A +a+2—(®+ (1 -47)a+473° +2) = 4g(a — §) = 4gw > 0.
Hence, by Theorem 4,
A Ha+2>c*+(1-49)a+45° +2> 0.
Thus we obtain
Theorem 7. Assuming that o > 7, we obtain
o +5a+6 > 0.
If the equality holds, then g = 0. Moreover, if g > 0 then

a2+a+220.
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TABLE 24
¢l z
2] (1% (2)
21/1 -2 21/1 —4
3 (1% (1,2) (3)
31/1—3 3V1—5 3V1—9
41 (1% (1%,2) (2%) (1,3) (4)
41/1 —4 41/1 -6 41/1 -8 41/1 — 10 41/1 — 16
51 (1°) (1%,2)  (1,2%)  (1%3) (2,3) (1,4) (5)
5v1 —5 b1y -7 b1y —-9 bvy—11 b5vy—13 bvy —17 bvy —25
6] (1% 1%2) (1725 (2% (1%.3)  (1,2,3) (1%,4)
6ry —6 614y —8 61y —10 6y —12 6v; —12 6v; — 14 617 — 18
6] (3% (2,4) (1,5) (6)
6vy — 18 6v; —20 6vp —26 617 — 36

14. PAIRS WITH w < 4

14.1. case in which vy < 3. As before o > 7 is assumed.
If 1y <3, then w =% — 9+ 1.

Moreover, if 0 > 8 and v1 < 3, thenw = 3 —9+1y >
If 0 = 8 and w = 6, then the type is [8 10,1 : 1].
If 0 =7, then vy <20/2; hence v; < 3 and w > 1.
Furthermore,
if w =1 then the type is [7 % 9,1; 1];

if w = 2 then the type is [7 % 9, 1; 2];
if w = 3 then the type is [7 * 9, 1; 22];
if w = 4 then the type is [7 * 9, 1;23];
if w = 5 then the type is either [7 *9,1;2%] or [7 * 10,1;1].
In that follows we assume that v > 4.

Here, assuming w = 2, 3,4, we shall determine the types of pairs (S, D).
First,we note that B < 2 by Proposition 5 saying that w > 12 if B > 3.

(c—3)(B—6)

B8 _9>6.

14.2. case in which )\ > 1.
First, we suppose that A =k —w; > 1.

14.3. case in which A > 1 and p > 1.
Assume that A > 1. Thus

—k—w+ 39

—

V=
By 11 > 4, we get
AN = 4k — 4w + 47 < —k — w + 37;
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hence, B
G < 3w — (4k + k). (26)

If p > 1, then by the formula (28), § < 3w — 13. So, from g > —1, it

follows that w > 4. Furthermore, if w = 4, then g = —1. However, by (4),
—w1 + 29> A+ p(k—2p) > 0.

Hence,if w = 4 then 2g > w; = 4 — ¢g. Thus, 3g > 4, which contradicts
g=—1.

Therefore, if p > 1 and A > 1, then w > 5.

14.4. case in which A > 1 and p = 0,u > 1. Assume that p = 0. Then
k=2u,A=2u—w+7gandsog=A\—2u+ w. Hence,

39 —w
v < g X
_ 2w —6u+ 3\
A
2w — 6u
=—+3.
X +
By v1 > 4, we get
2w — 6u
4<m < =—+3.
Hence,
w—3u > 0. (27)
Therefore,
v < 2w — 6u + 3.
Accordingly,

o < 4w —12u + 6. (28)

Then by the formula 28,
8 <o <4w—12u + 6.

Ifw=2o0r3or4then w=4and u=1.

Thus, ¥ =8v1+2u+w; = 8v1 +2+4—7. Moreover, 0 = 8 or 10. Hence,
v1 =4 or 5.

By A=2u—-449g=9g—22>1, we have g > 3.

By B

Z=-2uv + (I/1 — 1)(4 —g) + 2g,

if 1) =4 then Z =4 — 7 > 0. Hence, § = 4 or 3.

Moreover, g = 4 implies that Z =0 and so Y = 8v +2 =rv; =4r, a
contradiction. _ B

g = 3 implies that £ = 1. But Z = 3¢3 + 4t = 1, which is absurd.

If 1 =5 then 2 =6 — 2g > 0. Hence, g = 3, 2 = 0, which induces that
Y = 8uv; + 3 = rvq, that is absurd.
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14.5. case in which A > 1 and k£ =0.
Then A =k — wy > l;hence, g > 1 4+ w.
Recall the formula B

Z =29+ (1/1 - 1)(.4)1.
By vy 24 and w; = w —¢g < —1, we obtain

0<Z<2+3w =3w—7.
Therefore,
3w > 7. (29)

14.5.1. case in which w = 2.
Suppose that w = 2. Then
6=3w>g>w+1=3.

We shall distinguish the various cases according to the value of g.

(1) If g = 3, then w1 = —1 and so 0 < w? + wy + 29 = 8. But 11 > 4 was
assumed and so we get 1 =4 and o = 8.

Since Z = 7 — v1 > 1, it follows that Z=7- vy > vy — 1; thus 8 > 21y
and so v = 4. ByZN=7—V1 =3 = 3tz + 49, we get t3 = 1,19 = 0.

Since Y/ = sv; —1 = 3, it follows that s = 1 and so the type is [8+8;47, 3].

(2) If g = 4, then w; = —2 and so Z = 10 — 2v; > 0; thus 11 = 4 or 5.

If 1y =5 then Z=Y'=0and so by Y’ = sv; — 2 = 5s — 2, we arrive at
a contradiction.

If 1 =4 then Z = 2 = 3t3 + 4t9 = 0, which has no solution.

(3) If g =5, then wy = —3 and so Z = 13 — 314 > vy —1; thus 1y < 4.

(4) If g = 6, then w; = —4 and so Z =16 — 41, > 0; thus 1 = 4 and

Z = 0. Hence, s=1 and the type becomes [8  8; 47].
14.5.2. case in which w = 3.
Suppose that w = 3. Then
9=3w>g>w+1=4.

Furthermore,

Z=20+(1n-1)3-9)=39-3+ B -9g)u.
We shall distinguish the various cases according to the value of 7.
(1) If g = 4 then w; = —1 and
Zv =9 V.

If 9 = 1y then Z = 0; hence, Y’ = 0. But Y = 81 — 1 > 0, a contradiction.
Thus, 9 — v1 > v; — 1. Hence, v; = 4or5.
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If vy =5 then Y/ = sy — 1 =4 and so s = 1. The type is [10 * 10;57, 4].

If y = 4 then Z2 = 12— 8 = 4 = 3t3 + 4ty. Thus t3 = 0,ty = 1.
Y =4s—1 =2, a contradiction.

(2) If g =5 then w; = —2 and

Z =12 — 2v.

If Z = 0 then vy = 6,Y" = 0. Hence, g = 112 — 15 = 6, which is
impossible.

Otherwise, Z =12 —2v; > 11 — 1 then 1, =4

By 2=12—-2v; =4 =3t3+4ty, we get ty =1l and so Y' = sp; —2 =2
and so s = 1. The type becomes [8 * 8;47,2].

(3) If g = 6 then wy = —3 and

Z=15-3u >0,

which implies v1 = 4 or 5.
If 1y = 4 then Z =15 —3v; = 3. Hence, t3 =1 and so Y’ =45 —3 =
sv1 — 3 = 3 and so 4s = 6, a contradiction.

If vy =5 then Z = 0; thus Y’ = 0 and Y’ = sv; — 3 = 0, contradiction.

(4) If g =7 then w; = —4 and
Z=18—4dv; > 1 — 1,
which implies 11 < 4, a contradiction.
(5) If g = 8 then w; = —5 and
Z=21-5>u —1,
which implies 11 < 4, a contradiction.
(6) If g =9 then w; = —6 and
Z=24—61 >uv —1,

which implies 11 < 4, a contradiction.

14.5.3. case in which w = 4.
Suppose that w = 4. Then
12=3w>g>w+1=5.

Furthermore,

Z=25+(n-1)(4-7) =374+ (4.
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We shall distinguish the various cases according to the value of g.

(1) If g =5 then w; = —1 and

Zzll—ljl.

But by Y/ = 11s—1 > 0, we have Z> 0; thus Z>v —1. Hence, v < 6.

If vy = 6 then Z = 11 — vy = 5 = Bt5 + 8ty + -+~ . Hence, t5 = 1 and
Y’ =6s—1=5. Hence, s = 1 and the type becomes [12 * 12; 67, 5].

Ifvy =5 thenz;,;: 11 — vy = 6 = 4t4 + 6t3 + --- . Hence, t3 + to = 1,
which implies that Y/ =2 or 3. But Y’ =55 — 1 > 4, a contradiction.

If 1 =4 then Z=11— v1 = 7 = 3t3 + 4ts; hence, t3 = t9 = 1. Therefore,
Y’ =5. However, Y’ = 4s — 1; a contradiction.

(2) If g =6 then w; = —2 and

Z2=14-21, > 0.

Hence, vy < 7Tand if vy = 7then Y = 0. But Y = sy —2 = 0, a
contradiction.

But Z2 =14 — 21@ > v1 — 1, which implies that v < 5.

If vy = 5 then Z = 14 — 211 = 4 = 4t4 + 6t3 + 6t9. Thus t4 = 1 and
Y’ = svy — 2 =5s — 2 =4, a contradiction.

If vy = 4 then 2 = 14 — 2v; = 6 = 3t3 + 4ty. Thus 3 = 2 and Y’ =
sy — 2 = 6; we get sy = 4s = 8. Hence, s = 2 and the type becomes
[8 * 8; 45, 32].

(3) If g =7 then w; = —3 and

Z=17-3uv > v — 1.

Hence, v < 4 and v = 4.
But Z = 5 = 3t3 + 4t9,which has no solution.

(4) If g = 8 then w; = —4 and

Z2=20—-4v, > 0.

Hence, vy <5 and if v; = 5 then Y’ = 55 — 4 = 0, a contradiction.
If 1 = 4 then

Z =20 — 4y, = 4 = 3t3 + dty.

Hence, to = 1 and then Y’ = 4s — 4 = 2,a contradiction.
(5) If g =9 then w; = —5 and

Z=23—51, >0.

Hence, v; = 4.

Z =23 — by =3 = 3t3 + 4to.
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Hence, t3 = 1 and then Y’ = 4s — 5 = 3. Thus s = 2 is derived. The type
becomes [8 * 8;4°, 3].
(6) If g = 10 then w; = —6. and then
Z =266 >0.

Hence, v; = 4.

2226—6V1:2:3t3+4t2.

This has no solution.
(7) If g = 11 then w; = —7 and

Z=29—"T1 >0.

Hence, v; = 4.

Z

1 = 3tz + 4to.
This has no solution.

(8) If g = 12 then w; = —8 and
Z=232-81 >0.
Hence, v; = 4.
Z=0.
Hence, Y' = s1y —8 =4s — 8 = (r — t)4.
Therefore,r =t + s —2 =8 — 2 = 6. The type becomes [8 * 8;4°].

14.6. case in which A <0 and p > 1.
Given wy >k >wp >3 and p>1,one hasw > 3 +7.

14.6.1. case in which w = 2.
Then g = u =0 and so
° X=81/f+61/1+1+w1—2§=81/12+61/1+6,
o Y =81 +1+4+ w; =8 +6.
Thus, Z=-6< 0, a contradiction.

14.6.2. case in which w = 3.
Then g =0, 1.
If g =1 then £ = 3,u = 0. Hence,
° X:8V%+6V1+1+(JJ1—2?281/124-61/14—4,
o Y =8 +1+ w; =8 +6.
Thus, Z=-4< 0, a contradiction.

If g =0 then k = w,u =0 and so

o X =8u7 4 2wvy +w + 4,
o Y =811 +w+ 4.
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Thus, Z = (4 — w)y, —w —4 > 0. Hence, w =3 and Z =1 — 7.

If Z =0 then v1 =T7Tand Y =8v; + 7 =rv;. Hence, r = 9 and the type
turns out to be [15 * 22, 1; 77].

Otherwise, Z= v — 7 > vy — 1, a contradiction.

14.6.3. case in which w = 4.
Then g = 0,1, 2. We distinguish the following cases according to g.
(1) If g = 0 then w; = 5. Hence,
o X =8+ 2w +w—2+7,
e Y =8y +w+5.
Thus, Z = (5 — w)r; — 5 — w.

Ifw:3thenz§:21/1—820.

Suppose that Z2 =0, i.e. 1 =4. ThenY =811 +w+5=8v1 +8 =r17.
From 8 = (r — 8)v4, it follows that » = 10,1 = 4. Hence, the type becomes
[9 % 13,1;4].

Otherwise, Z= 211 — 8 > 11 — 1. Then v < 4, a contradiction.

Ifw:4thengv:1/1—9.

Suppose that Z2 = 0, ie. 1 = 9. Then Y = 811 +9 = rvy. From
9 = (r — 8)vy, it follows that r = 9,1 = 9. Hence, the type becomes
[19 % 19; 97].

Otherwise, Z =v; — 9 > 11 — 1, a contradiction.

(2) If g =1 then w; = 4. Hence, k = w < w; = 4.
o X =8ui+ 2w +w—2+4,
o Y =8y +w+4.
Thus, Z = (4—wry —2—w > 0. Then w = 3 and Z = vy — 5. Hence,
v1 =5and Y = 8y, + 7 = rvy, a contradiction.

(3) If g = 2 then w; = 3. Hence, k = w < w1 = 3. Hence w = 3 and
o X =8ui+ 61y + 2,
o Y =8 +6.
Thus, Z=-2> 0, a contradiction.

14.7. case in which A <0 and p=0,u > 1.
Given wy > k = 2u > 2, one has w > 2u +g. Moreover,
o X = 81/%4—4’(},1/1 + wy — 27,
o Y =8 +2u+ wi.
Thus, Z = —2ur; + (11 — Dwy + 29.
14.7.1. case in which w = 2.

Hfw=2thenby w=22>2u+g, we get u =1 and g = —1,0. Hence,
Z = —2l/1+(1/1 — 1)(2—§)+2§
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If g = —1 then Z= v1 — 5. In this case, vy = 5 and thus ¥ =811 +2+3 =
rvi. Hence, r = 9 and the type becomes [10 * 11;5%].
If g = 0 then Z = —2, a contradiction.

14.7.2. case in which w = 3.
If w=3 thenwuw=1and g=-1,0,1.
We distinguish the various cases according to g.
e [fg=—1 then w =4 and Z= 2v1 — 6 > 2, which is impossible.
e If =0 then w = 3 and Z = 1, — 3 > 1, which is impossible.
e lfg=1 then w = 2 and Z = 0. Since ¥ = 8y +2+2 =ruy, it
follows that 4 = (r — 8)v;. Hence, r = 9 and v; = 4 and the type
becomes [8 * 9; 5%].

14.7.3. case in which w = 4.
Ifw=4thenw=42>2u+g.
Furthermore, if w = 2 then g = —1,0. If u =1 then g = —1,0, 1, 2.
We distinguish the various cases according to v and g.

(1) If u =2 and g = —1, then

Z=06-2uy —-T=v, —T.
I£ v1 = 7 then Z=0and Y = 8v1 + 9 = rvy, a contradiction. Otherwise,
Z=v1—72>uv — 1, a contradiction.

(2) If u = 2 and § = 0, then Z = —4, a contradiction.

(3) f u=1and g= —1, then w; =5 and
ZN == 31/1 - 1.
Ift, —1 =1 then Z— (1 —1) = 211 — 6. In this case, the equation 214y — 6 =
2(v1—2)t,,—2+-- - has no solution. If ¢, 1 = 0 then Z = (2v1—4)t,, o+ .
If there exist at least two positive £,, ;, then there exists an integer j

such that Z > 2j(v1 — j) where vy —j5 > 2.
Then

jg—4 .
> > 2.
27 _3- 71T
Hence —1 > j, a contradiction.
However, from 3v; — 7 = j(v1 — j), it follows that

J+1+

) 2
j+3+4—=I/1.
j—
Hence, j = 5 or 4. In both cases, v; = 9. But,
Y=8n+2+5=tr1+uvy—7.

Then 7+ j = (t —7)v1 = 9(t — 7). Recalling that 7+ j = 12 or 11, we arrive
at a contradiction.
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(4) If u=1 and g =0, then w; =4 and

Z =21 —4.

Then ¢,,_9 =1 and
Y=8v+2+4=try+1v1— 2.
Hence, 8 = (¢t — 7)vy. Thus we have two cases:
e 1) =8,t =T, where the type is [16 * 17;8%,6] ;
e v =4,t =9, where the type is [8 * 9;4%, 2].

(5) f u =1 and g = 1, then w; = 3 and

Zzl/l—l.

Then ¢,,—1 =1 and
Y=8I/1+2+3=t1/1+1/1—1.

Hence, 6 = (t—7)v;. Then t = 8 and v, = 6. The type becomes [12%13; 6%, 5].

(6) If u=1and g = 2, then w; =2 and

Z=2>v -1

Hence, v; < 4, a contradiction.

14.8. case in which A < 0 and k£ =0.
In this case, p = 0,u = 0 and so § < w. We obtain the fundamental
equalities:
o X' =svi+uw — 27,
o V' = s + wy.
Then Z = (v; — 1)w; + 27.
We shall use the following symbol:
o c(t) = X7 tuy,
14.8.1. case in which w = 2. Then by wy =w —g =2 —7g > 0, we see that

g=-1,0,1,2.
We shall distinguish the various cases according to the value of 7.

(1) g= —1. Then w; = 3 and
Z = 3v1 — b.

(i) First assume that ¢, 3 = 1. If £(¢) = 2, then we find j such that
Z—(v1—1) =21 —4 = j(v1 — j). Solving this we have j = 2 or j +2 = 1.
Therefore, Y' =sv1 +3 =11 —1+20r Y =s11 +3 =11 —1+1v; — 2.

However the former case does not occur. In the last case, 6 = (2 — s)1q
Thus s = 1 and v = 6. The type becomes [12  12;67, 5, 4].
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If e(t) > 3, then there exists a number j such that 2v; —4 > 25(v; — j)
where 1 — 7 > 2. Then we get

?

. 1 .
]+1—jT12V12]+2-

This is a contradiction.
(ii) Assume that ¢,,—1 = 0. Then by Y’ = svq1 + w1 > v1, €(t) > 3 and so
there exists j such that 3v; —5 > 2j(v1 — j), where v; — j > 2. Then

j+1+ > > j+2

2] -3~
We have 2]];_23 > 1, which induces 1 > j, a contradiction.
(iii) Assume that ¢,,_; = 2.
Then
Z-21—-1) =11 -3>2n —2).
Thus, 2 > v, a contradiction.
It is easy to derive a contradiction from ¢,,_1 > 2.

(2) g=0. Then w; =2 and

Z2=21 —-2= (1/1 — 1)t,/1,1 + 2(1/1 — 2)(75,/1,2 + tz) —+ e

Thus t,,—1 = 2 and Y’ = 21y — 2 = svq + 2. From this it follows that
4 = (2 — s)v1. Hence, s = 1 and v; = 4. The type becomes [8 * 8;47,32].

(3) g=1. Then w; =1 and by the inequality (2), we get
o<W tw +24+25=2+2+2.
This contradicts the hypothesis that o > 7.

(4) g = 2. Then w; = 0 and by the inequality (2), we get
c<Wwitw +2+25=2+4.
This contradicts the hypothesis that o > 7.
14.8.2. case in which w = 3. Then by w — g = 3 — g > 0, we see that

g=-1,0,1,2.
We distinguish the various cases according to the value of g.

(1) g= —1. Then w; =4 and
Z;;; == 41/1 — 6.
(i) First assume that t,, 1 = 1.
If e(t) = 2, then we can find j such that Z— (v —1) = 3v; —5 = j(v1 —Jj).
Thus
. 4
J+3+—= =1
j—3

From this we obtain the next table:
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TABLE 25
i=3 j 43 v nmn—j mn—-1 Y
4 7 10 11 4 10  1dor 17
2 5 8 10 5 9 14
1 4 7 11 7 10 14 or 17

Recalling that Y’ = svy + 4, we obtain vy = 9,5 = 1,Y’ = 14. Thus the
type becomes [20 * 20;107, 9, 5].

If £(t) > 3, then we find j such that Z — (v; — 1) = 3v; — 5 > 2j(v1 — 7).
Thus 252 — 5 > (25 — 3)v1 and so

j+1-

> > 9+ 2.
53~ =T

This is impossible.
(ii) Assume that t,,_; = 2.
If e(t) = 2, then we find j > 1 such that

Z—2(V1—1):2V1—4:j(yl—j).
Thus

i —4=(j-2n.
If j > 2 then vy +j + 2.
If j = 2 then Z — 2(v; — 1) = 2vy — 4t,,_9. Hence, t,,_2 = 1 and
Y'=2(ry — 1)+ 11 —2=31; —4; thus Y’ = s1q + 4 = 3v; — 4. Hence,
8=(3—s).
We have two cases:
e 5= 1,11 = 4. The type becomes [8  8; 47, 32 2].
e s =21, = 8. The type becomes [16 * 16;85, 72 6].

Moreover, if j + 2 = v then Z — 2(v; — 1) = (201 — 4)ty. Hence, ty = 1
and Y’ =2(v; — 1) + 2 = 2uy; thus Y/ = sy + 4 = 211. Hence, = (2 — s)v.
Therefore, s = 1,1 = 4. The type becomes [8  8; 47,32, 2].

If (t) > 2, then we find j > 1 such that

Z-2 —1)=2u —4 > 2j(rn — j).

From this we can derive a contradiction.
(iii) Assume that ¢,,_; = 3. Then Z — 3(v; — 1) = v, — 3, contradiction.
(iv) Assume that t,,_; = 4. Then Z — 4(v; — 1) = —2, contradiction.

(v) Assume that ¢,,_1 =0 and t,, o = 1.
If e(t) = 2, then we find j > 1 such that

Z—2(V1—2):2I/1—2:j(yl—j).
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Thus 5
2+ ——=11.
j—2
From this we obtain the next table:
TABLE 26
j—2 j j+2 V1 I/1—j v —2 Y’

2 4 6 7 3 ) 8
1 3 ) 7 4 ) 9

But Y’ = svq +4 = Ts + 4, which is not equal to 8 or 9.
If (t) > 2, then we find j > 1 such that

Z -2 —2) =21 —2>2j(n —j).

From this it is easy to derive a contradiction.
(2) g=0. Then w; = 3 and Z = 3v; — 3.

(i) First assume that ¢,,_; = 1. Then Z — (11 — 1) = 2(; — 1).
If e(t) = 2, then we find j > 1 such that

22y —2) =21 —2=j(y —j).
Thus 9
J+2+ ——==11.
j—2
From this we obtain the next table:

TABLE 27
j—2 j j+2 11 I/l—j 1/1—1 Y’
2 4 6 7 3 6 9
1 3 ) 7 4 6 10

But Y' = sv; + 3 = 7s + 3, which means j = 3,s = 1.
The type becomes [14 * 14; 77,6, 4].

(i) Assume that #,,_; = 2. Then Z —2(v; —1) = 1, — 1. If &(t) = 3, then
we can find j > 1 such that
Z -2 —1) =vi— = j(rn —j).
Then j =1 or j = v1 — 1, a contradiction.
(iii) Assume that ,,_; = 3. Then Z—3(v; —1) = 0. Thus Y’ = 3(1; —1).

By the way, from Y’ = sv; + 3, it follows that sv; + 3 = 3(v1 — 1). Hence,
6 = (3— s)v1. Therefore, 1 = 6 and s = 2. The type becomes [1212; 6%, 53].
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(3) g=1. Then w; =2 and Z = 2u;.

First assume that ¢,,_; = 1. Then zZ - (r1—1)=v1+ 1.
If e(t) = 2, then we find j > 1 such that
Z-(un-2)=v+1=j —j).
Thus 9
j +1+ r =1.
From this we obtain the next table:

TABLE 28

3 4 ) 2 4 6

j—1 4 j+1 vy vi—j mnn—1Y'
2
1 2 3 5 3 4 7

Thus v1 = 5 and Y/ = 5s + 2, by definition. Then s = 1 and the type
becomes [10 * 10; 57, 4, 3].

(4) g=2. Then w; = 1 and Z = vy + 3.

First assume that ¢,,_; = 1. Then Z - (11 —1)=4.
If e(t) = 2, then we find j > 1 such that

Z-(n-1)=4=j(—j).

Thus j = 2,1 = 4. Hence, Y’ = 3+ 2. Moreover, Y/ = sv;+1=4s+1=25.
Hence, s = 1. The type becomes [8 * 8;47,3,2].

(5)g=3. Then w; =0 and Z =6. From Z =6 = (v, — 1)t,, 1 +---, it
follows that 1y = 4,t3 = 2. But Y’/ = 4s = sv; = 3+ 3 = 6, a contradiction.

14.8.3. case in which w =4 and g = 0.
Then by w—g=4—9 > 0, we see that g = —1,0, 1,2, 3.
We distinguish the various cases according to the value of g.

(1) g= —1. Then w; =5 and
Z = Svp — 1.
(i) First assume that t,, 1 = 1.
If e(t) = 2, then we find j such that Z — (11 — 1) =411 — 6 = j(v1 — j).
Thus

j + 4 + i = 1.
j—4
From this we obtain the next table: By Y’ = sv; + 5, we conclude that
s =1 and v; = 15. Hence, the type becomes [30 * 30; 157,14, 6].
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TABLE 29
j—4 j j+4: 121 I/1—j v —1 Y!
10 14 18 19 5 18 23
) 9 13 15 6 14 21
2 6 10 15 9 14 23

1 S 9 19 14 18 32

If e(t) = 3, then we find j such that
41/1 —6 Z 2j(l/1 —j)

Hence,

4
j+2+—ZV122J,

j—1

and so )

j+—2>17

j—1

Thus, j = 2.

Therefore, if £(t) = 3, then we find j such that Z — (v, — 1) — 2(y; — 2) =
2vy —2 =j(v1 — 7). Thus
) 2
Jt2+ ——=mn.
j—2

From this we obtain the next table:

TABLE 30
j—2 5 542 vy v—j5 -1 1n-2 Y
2 4 6 7 3 6 5 14
1 3 5 7 4 6 5 15

However, Y’/ = 7s + 5, which cannot be 14 or 15. This case does not
occur.

Finally, if ¢(t) > 4, then we find j such that 2v; — 2 > 25(v; — 7). Then
j=1or j=wv; — 1, contradiction.

(ii) Assume that ¢,,_; = 2.
If e(t) = 3, then we find j such that Z —2(v; — 1) =311 — 5 = j(11 — j).
Thus
, 4
J3 4+ ——==u.
Jj—=3
From this we obtain the next table: By Y’ = sv; + 5, we conclude that
27 = sv1 + 5,11 = 11,2 = 2. Hence, the type becomes [22 x 22; 115,102, 7].
If e(t) > 4, then we find j such that 31 — 5 > 2j(v; — j). Thus

2j% =5 > (25 — 3 > 2(2j - 3)J.
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TABLE 31
i=3 j j+3 v m—-j mn-1Y
4 7 10 11 4 10 24
2 5 8 10 5 9 23
1 4 7 11 7 10 27

Hence,
0>2j%—6j+5.

Then j < 2, a contradiction.

(iii) Assume that ¢, = 3.

If £(t) = 4, then we find j such that Z — 3(v; — 1) = 201 —4 = j(v1 — §).
Then j = 2.

Hence, (a) t,,_9 =1 or (b) ty = 1.

In the case (a), we get Y/ =3(v; — 1) + v; —2 and Y' = sv; + 5. Hence,
sv1 + 5 = 4r; — 5. In other words,

10 = (4 — s)vy.
Hence, either 1)v; = 10,s =3, 0r 2) 11 = 5,5 = 2.

In case 1), the type becomes [20 * 20;10°,93, 8].

Moreover, in case 2), the type becomes [10 * 10; 5,43, 3].

In the case (b), we get Y/ = 3(v; — 1) +2 and Y' = s1q + 5. Hence,
sv1 + 5 = 31y — 1. In other words, 6 = (3 — s)vy. Thus, s = 2 and v; = 6.
The type becomes [12  12; 65,53, 2].

If (t) > 5, then we find j such that 2v; — 4 > 2j(v; — 7). Then j2 — 2 >
(7 — Dy > 252 — 25. Hence,

0> j52—2j+2.

Thus, 5 < 2, a contradiction.

(iv) Assume that t,,—1 = 4.

If e(t) = 5, then we find j such that Z — 4(v; — 1) = v, — 3. In this case,
it is easy to derive a contradiction.

(v) Assume that ¢,,_1 = 0,%,,_2 = 1. Then
Z -2 —2) =31 — 3.
If (t) = 2, then we find j such that 3v; — 3 = j(v1 — j). Thus
. 6
JE3+——==mn.
7—3

From this we obtain the next table: By Y’ = sv; + 5, we conclude that
this case does not happen.
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TABLE 32
j—3 j j+3 141 I/1—j 1/1—2 Y’
6 9 12 13 4 11 15
3 6 9 11 5 9 14
2 ) 8 11 6 9 15
1 4 7 13 9 11 20

If e(t) > 3, then we find j such that 3y — 3 > 25(vy — j). Thus
2j% = 3> (2j — 3w > 457 — 65,
Then j < 3.

(vi) Assume that ¢,,_1 = 0,%,,—2 = 2. Then
Z—4n —2)=u +1.
If e(t) = 3, then we find j such that 11 +1 = j(v1 — j). Thus
. 2
J+1+——==u.
g—1

14.8.4. case in which w =4 and g = 1.
(2) g=0. Then w; =4 and

Z =41 —4.
(i) First assume that t,, 1 = 1.
If e(t) = 2, then we find j such that Z — (11 — 1) = 311 — 3 = j(v1 — J).
Thus

. 6
J+3+-——==mn.
7—3

From this we obtain the next table: By Y’ = sy + 4, we conclude that

TABLE 33
j—3 j j+3 %1 I/1—j 1/1—1 Y’
6 9 12 13 4 12 16
3 6 9 11 5 10 15
2 5 8 11 6 10 16
1 4 7 13 9 12 21

s =1 and v, = 11. Hence, the type becomes [22 x 22; 117, 10, 5].
If e(t) > 3, then we find j such that 3v; — 3 > 2j(v; — j). Then j = 2. In
this case,
Z—(n—-1)—21 —2) =v1 +1> 201 —2).
Hence, v; =4, 5.
If 1 = 5 then s = 1 and the type is [10 * 10; 57,4, 3, 2].
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If yy =4 then s = 1 and then Z — (1, — 1) = 2(v; —2) = v1 +1 = 5 = 4ty,
a contradiction.

(ii) Assume that t,,_; = 2.
If e(t) = 3, then we find j such that Z — 2(v; — 1) =21y — 2 = j(v1 — j).
Thus j2 — 2 = (j — 1)vy. Hence, if j > 2 then

, 2
71+2+ ——=11.
j—2
From this we obtain the next table: By Y’ = 7s + 4, we arrive at a
TABLE 34
=2 7 j4+2 v v—j vrn—-1Y
2 4 6 7 3 6 9
1 3 5 7 4 6 10

contradiction.

(iii) Assume that ¢,,_; = 3.
If e(t) = 4, then we find j such that 2 —3(v1 — 1) =v1 — 1 = j(v1 — j).
Thus j2 —1 = (j — 1)1y. Hence, j =1 or j =1 — 1.

(iv) Assume that t,,_1 = 4.

If £(t) = 4, then we find j such that Z—4(y;—1) = 0. Thus Y’ = 4(v, —1).
Hence, Y' = sy +4 = 4(v; — 1). Therefore, 8 = (4 — s)r1, which implies
that 1) 1y =8,s =3 or 2)v; = 4,5 = 2.

In case 1), the type becomes [16 * 16; 8%, 74].

While,in case 2), the type becomes [8 * 8;45, 34].

(v) Assume that ¢,,_1 = 0,t,,—2 = 1.
If e(t) = 2, then we find j > 2 such that Z — 2(v; — 2) = 211 = j(11 — j).
Thus j? —4+4 = (5 — 1)v;. Hence,
, 4
J+24+ ——=11.
j—2
From this we obtain the next table: By Y’ = sv; + 4, we conclude that

TABLE 35
j=2 j j+2 vi mi—-j n-2Y
4 6 8 9 3 7 10
2 4 6 8 4 6 10
1 3 5 9 6 7 13

s =1,19,5 = 3. The type becomes [18 x 18;97,7,6].
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If £(¢) > 3, then we find j > 2 such that Z —2(v; —2) = 2u1 > 2j(v1 — 7).

(vi) Assume that t,,_1 = 0,t,,_2 = 2.

If £(t) = 2, then we find j > 2 such that Z —2-2(v; —2) =4 > 3(v; — 3).
Hence, v = 4. Then t3 = 0,23 = 2. Thus, Y' = 4. But Y/ =4s+4 > 8, a
contradiction.

14.8.5. case in which w = 4 and g > 0.

(3) g=1. Then w; = 3 and

Z=3u -1

(i) First assume that ¢,, 1 = 1.

If e(t) = 2, then we find j such that Z — (v; — 1) = 21y = j(v1 —j). Thus
J > 2 and then

4
JA 24 —— =1,
j—2
From this we obtain the next table: By Y’ = sy + 3, we conclude that

TABLE 36
j=2 j j+2 vi mi—-j n-1Y
4 6 8 9 3 8 11
2 4 6 8 4 7 11
1 3 5 9 6 8 14

s =1and 1y, = 8. Hence, the type becomes [16 * 16;87,7,4].

If e(t) > 3, then we find j such that 2v1 > 2j(ry — j). Then j < 2, a
contradiction.

(ii) Assume that t,,_; = 2.
If £(t) = 3, then we find j such that Z — 2(1y — 1) = vy 4+ 1 = j(uy — §).
Thus if 7 > 2 then
Jt+1+ L = V1.
g—1
From this we obtain the next table: Then Y’ = sy +3 = 5s+3 # 10,11,

TABLE 37
j—l ] j-l—]. 121 I/l—j v —1 Y!
2 3 4 5 2 4 10
1 2 3 5 3 4 11

a contradiction.
If e(t) > 3, then we find j such that v; +1 > 2j(v; — j), a contradiction.
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(iii) Assume that ¢,,_; = 3.
If e(t) = 4, then we find j such that Z — 3(v; — 1) =2 = j(v; — j). This
case does not occur.

(iv) Assume that ¢,,_1 =0,%,,_2 = 1.
If e(t) = 2, then we find j such that Z — 2(vy — 2) =11 + 3 = j(v1 — j).
Thus
) 4
j+14+ F =.
From this we obtain the next table: Then Y’ = sv; + 3; hence, 11 = 7

TABLE 38
j—=1 45 j+1 v m—j n-2Y
4 5 6 7 2 5 7
2 3 4 6 3 4 7
1 2 3 7 5 5 10

and j = 2.

The type becomes [14 x 14; 77, 52].

If e(t) > 2, then we find j such that v; +3 > 25(r; — j). Hence, j < 2, a
contradiction.

(4) g =2. Then w; =2 and

Z = 2v1 + 2.
(i) First assume that ¢,, 1 = 1.
If e(t) = 2, then we find j such that Z — (v — 1) = v; + 3 = j(11 — j).
Thus

. 4
j1+14+—=1r;.
j—1

From this we obtain the next table: By Y’ = sy + 2, we conclude that

TABLE 39
j—2 j j+2 V1 I/l—j 1/1—1 Y’
4 5 6 7 2 6 8
2 3 4 6 3 ) 8
1 2 3 7 ) 6 11

s =1 and v, = 6. Hence, the type becomes [12 * 12;67, 5, 3].

(ii) Assume that t,,_; = 2.

If e(t) > 2, then we find j such that Z — 2(1y — 1) =4 > 21y — 4. Thus
vy = 4.

Hence, Z = 10 = 3t3 + 4. Thus, t3 = 2,t9 = 1l andso Y' =6 +2 = 8.
Since Y/ = 4s + 2, we derive a contradiction.
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(5) g=3. Then w; =1 and

Z=v +05.

(i) First assume that t,,_1 = 1.
If e(t) > 2, then we find j such that Z — (1 —1) =6 > 2(v; —4). Thus
v1 =4 or 5. Moreover, in the other cases, 11 < b is verified.

Therefore, we have two cases:
(i) 1 = 4. Then
Z:I/1+5:9:3t3+4t2.
We have a solution:t3 = 3,t9 = 0. Hence, Y/ = 9 and Y/ =4s+1 = 9.
Therefore, s = 2 and the type becomes [8 * 8;4°, 33].
(ii) v = 5. Then

Z=V1+5=10=4t4+6(t3+t2).

ty = 1,t3+1t3 = 1. Hence, Y =6 or 7. By Y’ = 5s + 1, we conclude that
s =1 and ty = 1. Therefore, the type becomes [10 * 10; 57, 4, 2].

(6) g =4. Then w; =0 and
Z=8.
From this we obtain the next table: By Y’ = sv; + 2, we conclude that

TABLE 40
j—=2 j j+2 v n—-j n-1Y
4 5 6 7 2 6 8
2 3 4 6 3 5 8
1 2 3 7 5 6 11

s =1 and 11 = 6. Hence, the type becomes [12 * 12; 67,5, 3].

15. SHARP ESTIMATE
Here we shall show the following result. Suppose that ¢ > 7.

Theorem 8. (1) 0 < (w+1)(w+ 2).
(2) If 0 = (w+1)(w+2) then the type is [2v) * 2v1; V], 11 — 1,1,], where

vp(vp—1

v = "5— and w = v, — 2.
3) If o < (w+1)(w+2) then 0 < w(w+ 1) + 2 except for the following
cases;

(a) (w=2), [10%11;5%;
(b) (w=3), [15%22,1;7°] and [16 = 16;8°%,72,6];

(4) If o < w(w+ 1)+ 2 then 0 < w(w — 1) + 4 except for the following
cases;

(a) (w=3,9=1), [12x12;6°,5];
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(b) (w=4,9=1), [18*18;97,7,6];
(¢) (w=4,9=0), [19*19;9°];
(d) (w=4g=0), [20 * 20; 10°, 93, 8].
Theorem 9. (1) o < (a+3)(a+2) ( By O.Matsuda);
(2) If o = (a+ 3)(a+2) then the type is [2v1 * 2v1; 0] 11 — 1,1,], where
V= ve(vy 7>andw-1/r—2

(3) 0 < a? +(1—4g)a+4g +2;
(4) If g > 0 then 0 < a(a+ 1) +2;
(5) If o < (@ + 3)(a + 2) then o < a(a + 1) + 2,except for the following
cases;
(a) (@=1), [10%11;5%] ;
(b) (a=2), [15%22,1;7°] , [16 * 16; 85, 7%,6] ;
(¢) (=3), [19%19;9% , [19 = 38,2;9%], [20 * 20;10°,93,8], [22 *
22; 116,102, 7], [22 % 22; 117, 8%] ;
(d) (a=4), [23%35,1;11%], [24 % 24;12%,11%,10], [24 % 25; 127,102,
[25 % 37,1;128,9], [28 % 29; 148, 8], [30 * 30;157,13,8] ;
(e) (@ =15), [36*37;18%,9], [38 + 38;197,17,9];
(f) (= 6),[46 * 46;23% 222 10].

Proof. By Theorem 6, we can assume that g = 0. Hence, w; = w + 1. In
particular, D? < 0.

15.1. case in which B > 3.
(1) If B > 3 and D? < 0, thena<4‘”+3 Hence, by o > 8, we get

8 < 4‘“ + 3 and so w > 15 ; hence w > 4. Further by

4 Jw—7
(w_l)w_(_w+3)=M_3

3 3
_ 4B x4-17)
- 3
> 9

we obtain
(w—1)w > o.

(2) We assume that B < 2. By the fundamental equalities, we obtain
z;,;:—)\yl —w1+2§—l~€20.
Hence, thanks to g = 0, we get
M < —wi +2—k < —wy —3< —6.

Thus
A=k —w <0.
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15.2. case in which A < 0 and p > 1.
First, we recall A < 0.
If p > 1, then recalling the inequality (15), we get
o< w? + 9wy — 2.
- 3
We wish to prove the inequality
w(w—1)+2: (wl—l)(w1—2)+220.

(30)

Then
wi 49w — 2, 2wi(w —9)+ 14
3 )= 3 ‘
If w; = 8, then the right hand side turns out to be —%. Thus, when
w1 > 8 the inequality is verified.
To study the case when w; < 8, we recall the fundamental equalities:
. X=8V%+2k1/1+l~§+w1 — 27,
o Y =8v +k+ wi.
Here k = p(k — 2p).
By using Lemma of Tanaka and Matsuda, we get

V=87 +(k+w)—X >0

(wl—l)(w1—2)+2—(

Thus N
wi(wr —1) —k + pk — 2 S

k+ 2w; + % = 0,

and so
1((,4}1 — 1) +2p2 -2
& > 0o,
The integral part of the left hand side is denoted by W (w1, k).
In that follows, we shall check the inequality by distinguishing the follow-
ing cases according to the value of wy < 7.

k+2wl+w

15.2.1. case in which w; = 7.

By A=k—w =k—7<0, we have k < 6.

It is easy to see that if p = 1, then W(7,3) = 31, W(7,4) = 28, W(7,5) =
27, W(7,6) = 27.

If p =2, then W(7,6) = 28, W(7,8) = 28.

But w(w — 1) + 2 = 32. Hence,

o <W(T,k)<32=w(w-1)+2.
15.2.2. case in which w1 = 6.
By A=k—wi =k—-6<0, we have K < 5. Then p =1 and
W(6,3) =25, W(6,4) =23, W(6,5) = 23.

We distinguish the following cases according to the value of k.
(1) k=3. Then p = 1,w = 3,u = 0. Then by the fundamental equalities

o X =82 + 2k +k+w—37=82+6v; +1+5+3,



RELATIONSHIPS BETWEEN BIRATIONAL INVARIANTS w AND ¢ OF ALGEBRAIC PLANE CURVES5

oY =8v+k+w =8n+09,
we get
Z =30, —9> (3v1 — 9ty _3.

Thus if ¢,, 3 = 1 then Y becomes tv; + (v —3) = (¢t + 1)1, — 3. Combining
this with ¥ = 8v; + 9, we get

12 = (t — ).

We have two solutions.

e 1) = 12.¢t = 8. The type becomes [25 * 37, 1; 128, 9];
e v =T7,t = 8. The type becomes [13 x 19, 1;6°, 3].

But if £,,_3 = 0 then Z = v; — 1 or = 2(»; — 1) or = 2v; — 4. In these
cases, v; < 7. B

If vy = 7 then Z = 3(v; — 3) = 12; hence, 12 = 6t + 10t5 + 12t4 + - - -.
t=6=2andY =ut+12=8v,+9. Then3 = (8 -t)r, = (8 -1)7; a
contradiction. _

If v; =6 then 2 = 3(v; — 3) = 9; hence, 9 = 5t5 + 8t4 + 9t3 + - - -, which
has no solution.

If v = 5 then 2 = 6; hence, 6 = 4t4 + 6(t3 + t2). Then t3+ 1o = 1. By
Y =5t + 3 or 5t + 2. From both we can derive contradictions.

If vy =4 then Z = 3; hence, 3 = 3t3 + 4f2. Then t3 = 1. By Y = 4¢{ + 3,
we get ¥ =811 + 9 = 4¢ + 3, a contradiction.

(2) k=4. Then p = 1,w = 4,u = 0. By the fundamental equalities
o X =87 +2kvi +k+w —29 =807+ 8, +2+5+3,
o Y =8v +k+ wi =8 + 10,
we get

Z =21 —10.

Thus 1 = 5 and Y becomes try = 8v; + 10 = 10v4. Hence, t = 9 and The
type becomes [10 * 10;59].

(3) k=5. Then p = 1,w = 3,u = 1. Then by the fundamental equalities
e X =82+ 2k +k+w—37=802+10v +3+5+3,
L] Y=8V1+k+wl =8I/1+11,
we get
Z=uv —11.
Thus v; = 11 and Y becomes tr; = 8v; + 11 = 9v1. Hence, t = 9 and the
type becomes [23 * 35,1;119].

15.2.3. case in which w; < 5.
In this case, w = w; — 1 < 4. These cases have already been treated in
the former section.
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15.3. case in which A < 0 and p=0,u > 0.
IfA=k—w <0and p=0,u >0 then k = 2u.
The fundamental equalities become

o X =82+ 2k +wy +2,
o Y =8 +k+w.

By Lemma of T. and M, we obtain
V = (k+w1)2—2k1/1—w1—2 >0,

and )
—wp —2
k+mn+fL{%——za (31)
Further,
Wi —wy —2
(wl—l)(w1—2)+2—(k+2w1+T)
1 1 2
=wi((l--)wi =3+ -)+2+—-—k,

k k k
which is written as F'(w;). As a quadratic function F'(w;) is increasing for
wy > 4.

54
F(8):28—k—?>Oexceptfork:2.
But for wy =8,k =2, we get

w2
k42w +Lt——==45>0.

Since o = 211, it follows that 1 < 22.
Noting that (w; — 1)(w1 — 2) + 2 = 44 for w; = 8, we conclude that for
w1 Z 8
(w1 —1)(w —2)+2< 0.

15.3.1. case in which w1 = 7.
Then we get

Z=2un+7Tv—1)—-2=(7-2u)r, — 9.
Hence, u < 3.

(i) w = 3. Then
Z= vy — 9.
Thus v1 =9 and Y becomes tv; = 811 + 6 + 7, a contradiction.

(ii) u = 2. Then
Z =3(v —3).
Thus (a) either t,,_3 = 1 or (b) Z = (v1 — Dty,—1 + (201 — 4)ty, 9.
In case (a), Y becomes tvy + v —3 =8y + 4+ 7. Hence, (t — 7)1y = 14.
Therefore, we have the following three cases:
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e ) = 14,t = 8; the type becomes [28 * 30; 14%, 11].
e vy =T7,t=9; the type becomes [14 x 16; 7%, 4].

In case (b), if t,, 1 = 1,¢,, 2 = 0 then 1) = 4. Z =3 and so t3 = 3 and
Y =tv; +9. But Y =8v; + 9. Hence, t = 8 and the type is [8 * 9;4%,33].
Ift,, 1 =2,%4,,_2=0thenyy =7 Z2=12= 6t6+10(t5 +t2)+12(t4+t3).
(iii) w = 1. Then
Z= 51/1 - 9.

If t,,—1 = 0 then assume () = 1; we will find j such that 5 — 9 =
j(v1 — j). Hence,

Then we have the next table.

TABLE 41

J—5 7 J+5 1

1 16 21 26 27
2 8 13 18 20
4 4 9 14 18
8 2 7 12 20
16 1 6 11 27

Then ¥ =1ty + 75 =8v1 +9; hence, j =9 and ¢ = 8. The type becomes
[36 * 37;18%,9].

If ty,—1 > 1 then

Z—(n—-1)=4(n - 2).
Thus t,,_2 =2 and Y becomes tv; +v1 — 14+ 2(r; —2) = 811 +9. Hence,
(t — 5)v1 = 14. Therefore, we have the following three cases:
e ) = 14,t = 6; the type becomes [28 * 29; 14%, 13, 122].
e 1) = T7,t = T; the type becomes [14 x 15;77, 6, 5].

15.3.2. case in which w = 5. Then by

o X' =sv?+8,
o Y/ = sy +6,
we get
226111—8.
By
2 w1+ 27 28

o< 542w +1+ 2 =5+ 134+ =, (32)
S S

we get 0 = 211 < 28.
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What we wish to prove is the next inequality:

o<w —w+2=22

Hence we shall study under the hypothesis v; = 12,13, 14.
case in which v; = 14

TABLE 42. vy =14

wp V1 Vi — 1 0 0 0 0 0

14 13 12 11 10 9 8 7
1 2 3 4 5 6 7
76 13 24 33 40 45 48 49
0 63 52 43 36 31 28 27

S OO D
o

The equation
7 =176 = 13z + 2431 + 3379 + 4025 + 4534 + 4875 + 4916

has no solution.
case in which v =13

TABLE 43. v1 =13

wp UV UV — 1 0 0 0 0

13 12 11 10 9 8 7
0 1 2 3 4 5 6
70 12 22 30 36 40 42
0 o8 48 40 34 30 28

S oo

The equation
Z =70 = 120 + 2221 + 3029 + 3623 + 4024 + 4225

has a solution g = 1,21 = 1,23 = 1. Then t19 = 1,111 + 1o = 1,tg + 14 = 1.
But Y/ =12+ 11+9 = 32,Y’ = 13s + 6. Hence, s = 2 and the type is
[26 * 265135, 12,11, 9.

case in which v =12

TABLE 44. vy =12

wp U vV — 1 v — 1 0 0 0

12 11 10 9 8 7 6
0 1 2 3 4 5 6
64 11 20 27 32 35 36
0 53 44 37 32 29 28

S oo o
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The equation
Z =64 = 11zg + 2021 + 2729 + 3223 + 3524 + 3625

has a solution zg = 4,z1 = 1.
But Y/ = 44 + 10,Y’ = 125 + 6. Hence, s = 4 and the type is [24 x
24; 124 114,10).

In the case when w < 4, we have already done it.

15.4. case in which A\ < 0 and k£ = 0.
(5) Supposing k =0 and A = —w; < 0, we shall verify the result.
We distinguish the following cases according to the value of ¢, ;.

15.5. case in which t,,_; = 0.
(5—-1)t,1=0.
By the fundamental equalities, we get

e Y =sytw=sr1t+w+1=sv1 —2)+2s+w+1,
o X'=svi+tw —2g=s?+w+3.
Then
Z=n(w+1)—w-3 (33)

and by Y’ = sv; + wy = svy; +w + 1, there exist at least s + 1 multiplicities
v;j with v; < v1. Hence,
Z=n(w+1)—w—3>2(s+1)(r,—2). (34)
Lemma of Tanaka and Matsuda implies
V=s —2)°+2s+w+1)?— (st +w+3) > 0.

By o = 2v¢, we obtain

Wit w—2
— > 0.
55 >0 (35)

The following inequality is what we have to prove.

28+ 2w+ 4+

ww—-1)+2>o0. (36)
Subtracting the left hand side of (31) from that of (30), we get

w+w-—2
—, )
which is written as F'(w). We shall show that F'(w) > 0 for w > 8. Indeed,
Then F(8) >1for1>s>T.

But F(7) = -3 for s = 1.

ww—-1)+2—-(2s+2w+4+
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TABLE 45

vy vV — 1
23 22 21 20 19 18 17 16 15 14 13 12
1 2 3 4 5 6 7 8 9 10 11
22 42 60 76 90 102 112 120 126 130 132
132 114 98 84 72 62 54 48 44 42

15.5.1. case in which w = 1.
Assume w = 7. Then, w; = 8.
When vy = 23, we have Z = 8v; — 1 = 173 and the following table.

The next equation
Z=174= 4221460x9+7623+90x4+102205+11226+120274+12628+13029+132x1¢

has no solution.
15.5.2. case in which w = 6.

15.5.3. case in which w = 5.

Put z1 =%, o2+ 19,290 =%y, 3+ 13, .

In general, if v > 2j then put z; 1 = 1, ; +t;, and if v = 25 then
.’Ej,1 = tj.

Moreover, put g =1%,,_1.

Then we have

ZN=6V1 -8 = (1/1—1)IE0+2(1/1—2).’E1+3(1/1—3).’E3+"' .
Under the hypothesis zg = t,,—1 = 0, we shall distinguish the various
cases:

(i) z1 = 1. Then

Z'=Z -2 —2)=4(n - 1).

(a)

Suppose that €(¢) = 2. Then for some j > 2, 4(v1 — 1) = j(v1 — J).

2 =16+ 12 = (j — 4,
and so

Jt4d+—=1u
j—4
From this we obtain the next table:
Therefore, 1 = t,,_o+ts = 1,2 = t,,_j+t; = 1. Moreover, Y' = sv+6.
Thus, we conclude that s =1 and vy = 15,%13 = t7 = 1.
Therefore, the type becomes [30 * 30; 157,13, 7].
Except for the above type, the next inequality is satisfied.
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TABLE 46

j—4 j j34+4 v -1 v1—j
12 16 20 21 20 9

6 10 14 16 15 10
4 8 12 15 14 11
3 7 11 15 14 12
2 6 10 16 15 14
1 ) 9 21 20 20
ww-1)+2>o0.
(b)
Suppose that ¢(¢f) > 3. Then there exists j > 2 such that 4(v; — 1) >
2j(v1 — §).
Then

201 = 1) 2 j(v1 = j)
and so since vy > 2j, it follows that
2=2> (- 2w > 2% —4j.
Hence,
0>52—4j+2=(j-27°-2
Thus 5 = 3. Therefore, may assume z9 = 1. Hence,
Z'=Z 201 —2)—3(n —3) =11 +5.

Then there exists j > 2 such that 14 +5 = j(11 — j).
Hence,

P =146=(—1rm =250 - 1)
Thus,
522 -2=(j—1)2-1.
Hence, j = 3 which implies z9 = 2. Furthermore, v; = 7. By 21 = 1,29 = 2,
we have 1 = t5 + 19,2 = t4 +t3. But Y’ = sv; + 6 = 7s + 6. Therefore,
ts = 1,14 = 2,5 = 1. The type becomes [14 % 14;77, 5, 4.

(ii) 1 = 2. Then

Z=Z-2.200-2) =2

(a)

Suppose that €(¢) = 2. Then for some j > 2, 2v; = j(v1 — j).

JP =4+ 4= (- 2w,
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and so A
P24+ —— =
j—2

From this we obtain the next table:

TABLE 47
J—2 j 74+2 vy vp—1 v1—j
4 6 8 9 8 5
2 4 6 8 7 6
1 3 5 9 8 8

Therefore, if v; =9 then Y =95+ 6. By 2 =1t7 +t2 = 2,,t6 = 1, we get
tr=14s=1,05=1,5= 1.
The type becomes [18 x 18;97,7,6,2].

(b)

It is not hard to derive a contradiction from e(t) > 2.

(iii) #; > 3. Then

Z'=Z-3-20n-2) <4

Suppose that €(¢) > 2. Then for some j > 2, 4 > 3(v;, — 3).

Hence, v; = 4. B

In general, when v; = 4, one has Z = 16 = 3t3 + 4t2. Thus, {2 = 4 and
Y’ =8,Y’ = 4s + 6, a contradiction.

15.5.4. case in which w < 4.
This case has alreasdy been treated in the former sections.

15.6. case in which ¢,,_; > 0 and s > 2.
(5—=2) ty,—1 >0,5>2.
Then by the fundamental equalities, we get

o Y=gy +tw =s1+w =81 — 1)+ s+ w,
o X' =svi+w —2g.
Then Lemma, of Tanaka and Matsuda implies
V=s(ry— 1?4 (s+w)? = (sv? +w —279) > 0.

By o = 21, we obtain

2 _ 2
s+ 2w 414 LT (37)
S
Recalling that g = 0, we get
w? 4w — 2

5+2w+3+f20. (38)
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The following inequality is what we have to prove.

ww-1)+2>o0. (39)
Hence, defining F(z) to be z(x — 1) +2 — (s + 2z + 3 + M%J) we
investigate the value F'(w).
Then F(8) =58 — (s + 19+ ) > 0 and
if F(7) =44 — (s + 17+ 21) < 0 then s = 2 and s + 17 + 24 = 46.

15.6.1. case in which w = 7. Assume w = 7. Then, w; = 8.
When vy = 23, we have Z = 8v1 — 1 = 173 and the following table.

TABLE 48

vy vV — 1
23 22 21 20 19 18 17 16 15 14 13 12
1 2 3 4 5 6 7 8 9 10 11
22 42 60 76 90 102 112 120 126 130 132
132 114 98 84 72 62 54 48 44 42

The next equation

Z =174 = 2200+4221, 46029+ 7623+9024+10225+11226+12027+126 28+ 13029+ 132210

has solution xzg = 2,z12 = 1. Hence, too = 2 and t13 + t10 = 1.
Y' =44+ 13 or 44+ 10. But Y’ = 235 + 8. Hence, s =2 and Y' = 54.
Thus the type becomes [46 * 46;23%, 222, 10].

15.6.2. case in which w = 6.

Assume w = 6. Then, w; = 7. When v = 18, we have Z = 117 and the
following table.

TABLE 49

vy vV — 1

18 17 16 15 14 13 12 11 10 9

0 1 2 3 4 5 6 7 8 9
17 32 45 56 65 72 77 80 81
100 85 72 61 52 45 40 37 36

The equation

Z =117 = 17z¢ + 3221 + 4529 + 5623 + 6534 + 7235 + TTz6 + 8027 + Slug

has a solution x93 = x5 = 1. Hence, t15 + t3 = 1 and t12 + tg = 1. Thus

Y'=15+120r 15+ 6 or 3+ 12 or 3+ 6. By Y/ = 185+ 7, we have a
contradiction.

When v; = 17, we have Z = 110 and the following table.
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TABLE 50. 11 =17

wl v nvn-1uvm-1 m-1 nn-1 -1 uv-1 1m-1 -1
717 16 15 14 13 12 11 10 9
0 1 2 3 4 ) 6 7 8
110 16 30 42 52 60 66 70 72
101 87 75 65 57 51 47 45

The equation

Z =110 = 16zq + 30z + 42z9 + 523 + 60x4 + 6625 + 70z6 + 8227

has no solution.
Therefore, when w = 6, we get o < w? —w+2=232and v, < 16.

15.7. case in which t,,_; > 0 and s = 1.
(5-3)
Thent=8—-s=T7andif r=¢+2 =9 then
oY =1 -1+,
o X'= (v —1)?+ 1,2
Thus,
oY =svtw=v; —1+w+2,
o X'=svi+w —2=1+w+3.
Hence,
V=-1)2+w+2?*-X=0.
From this, v, = w + 2 and by g = 0 we get v; = VT(ngl) and so
o= (w+1)(w+2),

which contradicts the hypothesis.

15.8. case in which r=t+2 > 9.

Further, suppose that r = t + 2 > 9. Let the multiplicites of C' be
denoted by v} (, which means that there are ¢ multiple points of multiplicity
v )yv1 — 1,€e1,€9,+-+. Then

oY =y —1l+e+ea+- =5+ wi,
e X'=(n—1)2+et+ed+ = +w —20.
Putting
512:62_""'76,2’:6%_'_"'26’227
we get

o Y' =y —1+4¢e + ¢ = sv1 + wi,

o X'= (1 —1)2+el+ef =sv? +w —27.
Then since s = 1 and g = —1, it follows that

e teh=w+2,
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ol 4l =2 +w+2.

and so
2e1eh = (61 + eh)2 — &2 — &)”
< (e1+eh)? —e2 —€f
<(w+2)? -2 +w+2)
= w4+ 3w+2-o0.
Hence,
216 < w? 4+ 3w +2 - 0. (40)

However, since

(e1=2)(e2 = 2) 20,
it follows that

g1eh > 2(e1 + &) — 4. (41)
Therefore, combining this with (34), we obtain

2e16h > 4w+ 2) — 8 = 4w.
Hence,

w2+3w+2—024w,

and so
wQ—w+220,

as required.

15.8.1. ezample. If the type is [2v1 * 2v1; 07,01 — 1,¢,2] where 1) > € > 2,
then by

[ Y’=V1—1+6+2=1/1+wl7

o X'=( -1+ +4=vi+w —27

we get
w1 =¢+1,
and so
w=e+14+7.

Moreover,

2 +14+e2+4=w -2
Hence,

o=2u =2 +5— (v —29);
thus,

o= (w1 —1)%+5— (w1 — 29);
Wheregzyl—l—E(EQ—_l)

( 1)

Suppose that g = 0,i.e.,, ) =1+ Then w = ¢ and

o= w? —w+2:a + o+ 2.
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If g =1 then
0=w?’—3w+6=0a’—3a+6.

16. APPENDIX

16.1. pairs with w=1,2.
Under the assumption ¢ > 7, we show the list of types of pairs with
w=1,2,3,4,5,6. However, associated types are omitted, for simplicity.

TABLE 51. w=1,2

wl| o type genus
1|7 7%9,1;1 27
27 7%9,1;2 26
2|8 [8 * 8;47] 7
218 8 % 8;47, 3] 4
2| 8| [8%847,3% 1
210 | [10%11;5% 0
2|12 [12%12;67,5,4]| 0

16.2. pairs with w = 3.

TABLE 52. w =3

w| o type genus
317 [7%9,1;27] 25
3|8 [8 * 9; 47] 2
3|8 [8 % 8;47,2] 6
38| [8%8;47,3,2] 3
3|8 | [8%8;47,32 2] 0
3|10 [10%10;57,4,3] 2
3110| [10%10;57,4] 5
3112 [12%12;6°,5%] 1
3| 14| [14%14;77,6,4] 1
3|15| [15%22,1;79 0
3116 | [16%16:85,72.6] | 0
3120 | [20%20;107,9,5] | 0
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16.3. pairs with w = 4.
TABLE 53. w =414

[ type 5] genus
7%9,1;2
[8 % 9;4%, 2]
[8 * 8; 4]
8 % 8;46 3]
[8 * 8; 46, 3%
[8 * 8; 46, 3%]
[8 * 8;46, 34]
[8 * 8;47, 2%

[8 * 8;47, 3,22
[9 % 13,1;4)
[10 % 10;57, 4, 2]
[10 * 10;57, 4, 3, 2]
[10 % 10; 55, 43]
[10 % 10; 55,43, 3]
[12 % 13;6%, 5]
[12 % 12; 65,53, 2]
[12 % 12567, 5]
[12 % 12;67, 5, 3]
[12 % 12;67,5, 3%
[14 % 14; 77, 52]
[14 % 14;77,6, 4, 2]
[16 * 16:87,7, 4]
[16 + 16; 8%, 74]
[16 + 17; 88, 6]
[18 % 18;97.7, 6]
[19 % 19; 9]
[19 * 38,2;99]
[20 * 205105, 93, 8]
[22 % 22;117, 10, 5]
[22 % 22; 116,102, 7]
[22 % 22; 117, 82
[30 % 30; 157, 14, 6]
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TABLE 54. w =15

type genus
[7 % 10,1; 3] 0
[7%10,1;3) 3

w | o

517

517

57| [7%10,1;3% 6
571 [7%10,1;3%] 9
57| [7%10,1;37] 12
571 [7%10,1;3°] 15
571 [7%10,1;3°] 18
57| [7%10,1;34] 21
571 [7%10,1;3%] 24
571 [7%10,1;32] 27
5171 [7%10,1;3] 30
5171 [7%10,1;1] 33
5071 [7%9,1;29 23
5|8([8%8;4%342] 0
518 [8%9;4°,22] 0
58| [8%8;47,3,2%]| 1
518 [8x9;4%, 32 2
58 [[8%8;453% 2| 3
58| [8x8;:47,27%] 4
58] [8x%9;4% 3] 5
58 [[8%8;45322)| 6
5|8 [8 % 9; 48] 8

16.4. pairs with w =5 (1).
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16.5. pairs with w =5 (2).
TABLE 55. w =75 (2)

o type genus
10 | [10 % 10557, 4, 3,27]
10 | [10 % 10;55,4°]
10 | [10 % 11;58,4,3]
10 | [10 % 10;55,43,2]
10| [10 % 10;57, 3°]
10 | [10%10;57,4,2?]
10 [10 % 11; 5%, 4]
10 | [10%10;57,3%]
10 [10 % 10;57, 3]
10 [10 % 10;57]
11 [11 % 11;50]
11| [11%22,2;5']
12| [12%12;6° 5% 4]
12| [12%13;6% 4%
12| [12%12;67,42,3]
12| [12%13;68,5,2]
12| [12%12;67,5,3,2]
12 [12%12;67,47%
12| [12%12;67,5,2]
13| [13%19,1;6° 3]
13 [13 % 19,1;6]
14 | [14 % 14;75,62, 5, 3]
14 | [14%14;77,5,47]
14 | [14%14;77,52,2]
14| [14%14;77,6,3?]
[ ]

14| [14%14;75,6%,5
14| [14%14;77,6,3]
14| [14%14;77,6]

GOt Ot Ot O OOt OTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOToToton oYy g
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16.6. pairs with w =5 (3).
TABLE 56. w =75 (2)

o type genus
16 | [16 % 16;8%,77%,2]
16 [16 + 17; 8%, 6, 2]
16 | [16 * 16;87,7,4,2]
16 [16 + 17; 87, 72]
18| [18%18;97,7,6,2]
18| [18%18;97,8,4,3]
18| [18%18;9%,82, 6]
18 [18 % 18;97. 8, 4]
20 [20 * 20; 104, 99]
20 | [20%21;107,9,8]
22 | [22%22;117,10,5,2]
22 [22 % 23; 118, 7]
23 [23 % 35,1; 117
24 | [24 * 24;12% 114, 10]
24 | [24%25;127,10%]
24 | [24 % 24;127,10,7]
24 | [24%24;127,11,5]
25| [25%37,1;128 9]
26 | [26 * 26;13,12,11,9]
28 [28 x 29; 148, 8]
30| [30%30;157,13,8]
32| [32%32;167,15,6]
42 | [42 % 42;217,20,7]

[en}
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16.7. pairs with w =6 (1).
TABLE 57. w =26

type genus
[7%10,1;310 2]
[7 % 10,1;3°,2]
[7 % 10, 1; 3%, 2]
[7%9,1;27]
[8 * 8;47,3,2%]
[8 % 10; 410, 3]
[8 * 8; 45, 3]
[8 % 9;48, 32 2]
[8 * 8; 45,3322
[8 * 8;47, 24]
[8 * 10;417]
[8 * 8; 45, 3%]
[8%9;4%,3,2]
[8 * 8; 45,32 22]
[8 * 8;45, 3%
(8% 9;48, 2]
[8 * 8;45,3, 2]
[8 % 10,1; 1]
[9 % 13,1;4°,3?]
[9 % 13,1;4%, 3]
[9 % 13,1;4%]

NeRNeIiN<Nolo JJNoslo Jo sle e oo JNe sloJNe JiloBNo o BN BENEEN BEN| Je]
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TABLE 58. w =06

16.8. pairs with w =6 (2).

w| o type genus
6 |10 | [1010;5°,4°,2] 0
6 | 10 | [10 % 10;5%, 42, 33] 0
6 | 10 | [10 % 11;5%,4,3,2] 0
6 | 10 | [10 % 10;5%, 43, 22] 1
6| 10| [10%10;57,33, 2] 1
6| 10| [10%10;57,4,23] 2
6|10 | [10%11;57,4%] 2
6 | 10 | [10 % 10;55 42, 32] 3
6 10| [10%11;5% 4,2 3
6|10 | [10%10;57,32 2] 4
6|10 | [10*10;55 42, 3] 6
6 10| [10%10;57,3,2] 7
6| 11| [11%16,1;5% 3 2
6|11 [11 % 16,1; 5] 5
6| 12| [12%12;67,4%,3,2] | 0
6|12 [12%13;685,22] 0
6|12 [12%12;67,5,3,2] | 1
6 12| [12%12;6% 55 1
6| 12| [12%13;67,52 4] 1
6| 12| [12%12;6%,5%,4,3] | 2
6|12 | [12%12:67,42 2] 3
6|12 | [12%12:67,5,22 4
6| 12| [12%12;65 52 4] 5
6| 13| [13%20,1;6'] 0
6 13| [13%19,1;6% 2] 2
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TABLE 59. w =06

o type genus
14 | [14 % 14;77,52,22]
14 | [14 % 14;77,6, 3%, 2]
14 | [14 % 14;7%,6°, 5]
14| [14%15;77,6,5%]
14| [14%16;7°,4]
14 | [14%14;7°,64,3]
14 | [14 % 14;75,62,47]
14| [14%15;78,5,3]
14 | [14 % 14;75,62, 5, 2]
14 | [14%14;77,6,3,2]
14| [14 % 14;75 6]
14| [14%15;78 5]
14| [14%14;77,6,2]
15 | [15%22,1;7%,6,4]
16 | [16 * 16;87,7,4,2?]
16 | [16 * 16;8°, 7,62, 4]
16 | [16%17;88,5,4]
16 [16 * 18; 8%, 3]
16 | [16 % 16;87,6,5, 3]
16 | [16%17;87,7%,2]
16 | [16 % 16;87,7,3?]
16 [16 * 18; 87]

16 | [16 % 16;87,6, 5]
16 | [16 % 16;87,7,3]

o
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16.9. pairs with w =6 (3).
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TABLE 60. w =6 (2)

w| o type genus
6 17| [17%25,1;8%.7,3] 0
6|17 [17 % 25,1;8%. 7] 3
6|18 | [18%18;9% 8,72 3] 0
6| 18| [18%18;97,7,5,4] 0
6|18 [18 % 19; 93,6, 3] 0
6|18 | [18%18;9% 826,2] 1
6|18 | [18%18:97.8,4,2] 2
6|18 [18 % 18;95.8, 72 3
6|18 [18 % 19; 9%, 6] 3
6 20| [20%20;10% 95, 2] 0
6 20| [20%20;107,8,6,3] 0
6 20| [20%21;107,9,8,2] 0
6 20| [20%20;107,9,4,3] 1
6|20 [20 % 21; 109, 93] 2
6 | 20 [20 * 20; 107, 8, 6] 3
6 | 20 [20 * 20; 107, 9, 4] 4
6 |21 [21 % 31,1;108, 8] 2
6 | 22 [22 % 23;118,7,2] 0
6|22 [22%22;115,10,9,8] 2
6|24 | [24%24;127,10,7,2] 0
6|24 | [24%24;127 11,47 0
6|24 | [24%24;127,11,5,2] 1
6|24 [24 % 24;123,119] 1
6 |24 | [24%25;125 112 10] 1
6|24 | [24%24;12°11% 7] 2
6|26 | [26%26;137,12,5,3] 0
6 26| [26*26;13°,123 9] 1
6|26 | [26x26;13% 12,107 1
6 26| [26%26;137,12,5] 3
6 |27 [27 * 28; 13 0
6 |27 [27 % 55,2; 13 0
6 | 28 [28 % 41,1;137) 0
6|28 | [28x*28;143,13% 12] 0
6 |28 | [28%29;145 13,12?] 0
6 | 28 [28 * 30; 148, 11] 0
6 28| [28%28;147,11,9] 1
6|29 | [29%43,1;147,13,11] 0
6 |30 [30%30;155 132 11] 0
6 |30 [30*30;15% 142 8] 1
6 31| [31x46,1;15% 10] 0
6|32 [32%32;167,15,6,2] 0
6 | 32| [32%32;16%,15,14,10] | 0
6|32 [32%32;167,12,11] 0
6|34 [34%34;177,16,6] 2
6 | 36 [36 * 37; 188, 9] 0
6 38| [38%38;197,17,9] 0
6 |44 | [44 % 44;227,21,7] 1
6| 56| [56*56;287,27,8] 0
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17. PAIRS WITH SMALL «

TABLE 61. a=1,2,3

o type genus
10 [10 % 11; 5] 0
12| [12%12;67,5,4]
8 [8 + 8;47,32%,2]
8 [8 * 8;47, 3%
15 [15 % 22,1; 79
16 | [16 + 16;8%,72, 6]
20 | [20 % 20;107,9, 5]
9 [9 % 13,1;4]
10 | [10 % 10;55,43, 3]
12| [12%12;6%,53 2]
12| [12%12;67,5,37]
12 [12%12;6%,59)
14 | [14%14;77,6,4,2]
14| [14 % 14;77,6,4]
19 [19 % 19; 9]

19 [19 * 38, 2; 99
20 | [20 % 20;10°, 93, 8]
22 | [22 % 22; 116,102, 7]
22 | [22%22;117,8?%]
30 | [30 % 30;157,14, 6]
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17.1. pairs with a =1,2,3.



86 SHIGERU IITAKA GAKUSHUIN UNIVERSITY

TABLE 62. =4

17.2. pairs with a = 4.

al o type genus
417 [7 10, 1; 3] 0
418 [8 * 8;45, 34 2] 0
418 [8 % 9;4°,22] 0
418 [8 * 8;46,34] 1
41 8 [8 % 9;49 2] 1
418 [8 * 9;47] 2
4 110| [10%10;57,4,3,2% 0
4110| [10%10;57,4,3,2] 1
4110 [10 * 10;57, 4, 3] 2
4|11 [11 % 11;5'0] 0
4111 [11 % 22,2;5'9] 0
4112 [12%12;65 5% 4] 0
4|12 [12 % 13; 6%, 42] 0
4|13 [13 %19,1;6°, 3] 0
4114 [14%14;7°62,5,3] 0
4114 [14%14;77, 5,47 0
4116 [16%16;8%,74 2] 0
4116 [16 * 17; 8%, 6, 2] 0
416 [16 * 16; 8%, 74] 1
4|16 [16 % 17; 8%, 6] 1
4 (18| [18%18;97,7,6,2] 0
4 (18| [18%18;97,8,4,3] 0
4118 [18 * 18;97,7, 6] 1
4|22 [22%22;117,10,5,2] 0
4122 [22%22;117,10,5] 1
4|23 [23 x 35,1;117] 0
4| 24| [24 % 24;12%,11%,10] 0
4124 [24%25;127,10% 0
4125 [25%37,1;128,9] 0
4126 |[26%26;135,12,11,9] | 0
4128 [28 * 29; 148, 8] 0
4130 [30%30;157,13,8] 0
4 42| [42%42;217,20,7] 0
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TABLE 63. =5

type genus
[8 % 8;47,3,2%]
[8 % 10; 410 3]
[8 % 8;47,3,23]
[8 % 8;47,3, 2%
[8 % 8;47,3,2]
[8 % 8;47, 3]
[9 % 13,1;4°, 32]
[10 % 10; 57,45, 2]
10 | [10 % 10;55,42,33]
10 | [10 % 11;5%,4,3,2]
10 | [10 % 10;5°,4°]
10 | [10 % 11;58,4, 3]
12 | [12 % 12;67,42, 3,2
12 | [12%13;6%,5,22]
12 | [12%12;67,42, 3]
12| [12%13;68,5,2]
12| [12%13;68, 5]
13| [13%20,1;6]
14 | [14%14;77,52,22]
14 | [14 * 14;77,6, 32, 2]
14 | [14%14;7%,6°,5]
14 | [14%15;77,6,57]
14 [14 % 16; 77, 4]
14 | [14 % 14;77,52 2]
14 | [14%14;77,6,3%
14 | [14%14;77,5%]
15 | [15%22,1;7%,6,4]

o
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17.3. pairs with « = 5.
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TABLE 64. « = 5, continued

17.4. pairs with a = 5, continued.

a| o type genus
516 [16%16;87,7,4,27 0
5116 [16+16;85, 7,62, 4] 0
51|16 [16 % 17; 8%, 5, 4] 0
51|16 [16 % 18; 8%, 3] 0
5116 [1616;87,7,4,2] 1
5|16 [16 * 16;87,7, 4] 2
5|17 [17%25,1;8%,7,3] 0
5118 | [18%18;9%,8 7% 3 0
5118 [18%18;97,7,5,4] 0
5118 [18  19; 98,6, 3] 0
5120 [20%20;10% 95, 2] 0
5120 | [20%20;107,8,6,3] 0
5120 [20%21;107,9,8,2] 0
5120 [20 * 20; 104, 9°] 1
520 [20 % 21;107, 9, 8] 1
5|22 [22 % 23;118,7, 2] 0
5|22 [22 x 23; 118, 7] 1
524 [24%24;127,10,7,2] 0
524 [24%24;127,11,4% 0
5124 [24%24;127,10,7) 1
5|26 [26%26;137,12,5,3] 0
5|27 [27 % 28;139) 0
5|27 [27 * 55, 2; 137] 0
5|28 [28 x 41,1;137] 0
5128 | [28%28;143 135 12] 0
5128 | [28%29;145 13,122 0
5|28 [28 x 30; 148, 11] 0
5129 [29%43,1;147,13,11] 0
5130 [30%30;155 132 11] 0
531 [31%46,1;15% 10 0
5132 [32%32;167,15,6,2] 0
5132 [32%32;16%15,14,10] | 0
5132 [32%32;167,12,11] 0
5132 [32%32;167,15,6] 1
5136 [36 + 37; 188, 9] 0
5(38] [38%38;197,17,9] 0
5(56| [56*56;287,27,8] 0
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TABLE 65. a =6, (1)

type genus
[7* 14, 2; 312] 0
[7 % 7; 312
[8 * 8; 45,35, 2]
[8 % 9; 48,32, 2%
[8 * 8;4°, 3]

[8 % 9;48 32 2]
[8 % 9;48 3%
[10 % 10; 55, 43, 23]
10 | [10%10;57,33, 22

10| [10 % 11;55,49)
10 | [10 % 12;5% 4, 3]
10 | [10 % 10;55,43, 2%
10 | [10 % 10;57,33,2]
10 | [10 % 10;5%,43, 2]
10 | [10 % 10;57, 3°]
10 | [10 % 10;55,43]
11| [11%16,1;5%,42,3)
12 | [12 % 12;67,5,3,23)
12| [12%12;6%,5° 2]
12 | [12 % 12;6°,5%,3?]
12 | [12 % 12;6%, 5,43, 3
12 | [12 % 13;67,5%,4,2]
12 | [12%13;68,4,3?]
12 | [12 % 12;67,5,3,22]
12| [12 % 12;6%,5°]
12 | [12%13;67,52, 4]
12 | [12%12;67,5,3,2]
12| [12%12;67,5,3]

& o ® 0 0 oo =1 ~J|Q
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17.5. pairs with a =6, (1).
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TABLE 66. a = 6, (2)

17.6. pairs with a =6, (2

).

a| o type genus
6 | 14 | [14%14;7°,67,3,2] 0
6| 14| [14%14;75,62,42,2]| 0
6|14 | [14%14;77,5,4,37] 0
6|14 | [14%15;78,5,3,2] 0
6|14 | [14x*14;75 6%, 3] 1
6 | 14| [14%14;7°,62,42] 1
6|14 [14%15;78 5,3 1
6|15 [15 % 16; 719] 0
6|15 [15 % 31,2; 7'9] 0
6|16 [16 * 23,1;719] 0
6|16 | [16 % 16;87,6,5,3,2] | 0
6|16 | [16x17;87,7% 22 0
6|16 | [16*16;8%,7°, 6] 0
6|16 | [16x17;85 7% 62 0
6|16 | [16*18;8% 7,5 0
6|16 | [1616;87,6,5,3] 1
6 16| [16*17;87,7% 2] 1
6|16 [16 % 17;87,7?] 2
6| 17| [17%25,1;87,72,5] 0
6|18 | [18%18;95,82.6,22]| 0
6|18 | [18x%18;97,8,3° 0
6|18 | [18%18;9°,8%, 6,5 0
6|18 | [18%18;95 73 5] 0
6|18 | [18%18;95 8, 67 0
6|18 | [18%19;95 83 4] 0
6|18 | [1818;95 82 6,2 1
6|18 | [18%18;9% 82 6] 2
6|19 [19%28,1;9% 7,4 0
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TABLE 67. a =6, (3)

o type genus
20 | [20 % 20;107,9,4, 3, 2]
20 | [20 % 20;106,9,8,7, 4]
20 | [20 % 20;107,7,6,5]
20 [20 % 215108, 5%]
20 [20 % 22;108,9, 3]
20 | [20%20;107,9,4,3]
21| [21%31,1;107,92,3]
22 | [22%22;11°,103,8, 3]
22 | [22 %22;115,102,6, 4]
22 | [22%22;115,93 3]
22 | [22%22;117,9,5%]
24 | [24 % 24;127,11,5,22]
24 | [24 % 24;123,115,2]
24 | [24%24;127,9,8,3]
24 | [24 * 25;126,112, 10, 2]
24 [24 % 25;128,7, 3]
24 | [24%24;127,11,5,2]
24 [24 % 24;123,119]
24 | [2425;126112,10]
24| [24%24;127,11,5]
26 | [26 % 26;135,123,9,2]
26 | [26 * 26;13°, 12,102, 2]
26 | [26 % 26;137,11,7,3]
26 | [26 % 26;13°,123,9]
26 | [26 % 265135 12,107
28 | [28 % 28;147,11,9,2]
28 | [28%28;147,11,9]

o
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TABLE 68. a =6, (4)

a| o type genus
6 |30 [30%30;15% 142 8,2] 0
6 |30 [30%30;15°% 142 8] 1
6 | 31 [31 x 48,1; 15 0
6|32| [32%32;167,15,5,4] 0
6 |32 [32%32;162, 155 14] 0
6 |32 [32%33;165, 152 142] 0
6 32| [32%34;167,15,13] 0
6 | 33| [33%49,1;165, 152,13 0
6 | 34| [34%34;17°,16%,14,13] | 0
6 |34 [34 % 34; 175, 143] 0
6 | 34| [34%35;175 162 12] 0
6|36| [36x36;187,17,6,3] 0
6 |36 | [36*36;185 17,15,12] 0
6 |38 [38x38;19°, 183 11] 0
6|40 | [40 % 40;207,17, 11] 0
6 | 44 | [44 % 44;227 21,7,2] 0
6 | 44 [44 * 44; 227,21, 7] 1
6 |46 | [46 * 46;235 222 10] 0
6|72 [72 % 72; 367, 35, 9] 0
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