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l. ELLIPSES, HYPERBOLAS, HYPERBOLICS

Algebraic plane curves were treated Apollonius of Perga (died
¢.190 BC) in the study of conic sections which are ellipses , the
parabolas, and hyperbolas.

Rene’ Descartes applied his newly discovered Analytic geom-
etry to the study of conics. This had the effect of reducing the
ceometrical problems of conics to problems in algebra. Features
Conics are of three types: parabolas, ellipses, including circles,
and hyperbolas.

A conic is defined by 2% + y* = 2%, Cutting out by a plane
ax +by+cz = d, one gets the quadratic equation by eliminating
the variable z.

a:c2+2hxy+by2+26x+2fy—l-c:()



By applying Euclidean transformation
oz =ax+by+p,
oy =cx+dy+qg
A = (a b c d), A being a orthogonal matrix, conics are trans-

formed into one of the followings.
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1.1. imaginary circles. By definition, one has a curve defined
by 22 + y? = —1, which looks like empty. But one cannot ex-
clude such quadratic equations. Sometimes the equation defines
1maginary circle. In order to treat these , one has to points whose
coordinates consist of complex numbers. Then a figure defined
by 22 + y? = 1 is pairs of complex numbers turns out to be a
real surface in the 4-dimensional space. By using complex num-

bers, one can apply algebraic treatment easily, neglecting visual
difficulties.



2. PROJECTIVE CURVES

Conics have three different types. But from the view point of
projective geometry, conics are just one thing.

Instead of usual coordinates (x,y), one introduce homoge-

neous coordinates xg, x1, x92, by putting
L] L2

r=—1y=—.

L) L0

2 2

For example, a parabola y = x“ 1s transformed into woxg = 17

by using homogeneous coordinates.

Applying a suitable projective linear transformation, one gets

T = :13% + :U% It 1s clear that any conics are transformed into

T = :13% + :13% by a projective linear transformation.



Linear transformations using homogeneous coordinates is called
projective transformations. As usual, coefficients are complex
numbers. Then one has complex projective transformations.



By using usual coordinates x = z1/xg,y = z9/xg and 7’ =
:13’1 / :1:6, y' = :1:’2 / 5136, projective complex numbers transformations
are expressed as follows:

o — ax+by+p
a//x+b//y_|_p//7
o/ — Ttby+p’
Yy N
where
a b p
A — a/ b/ p/ ’
a// b// p//

A being complex regular matrix.
It is clear that any conics are transformed into x
by a projective linear transformation.
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3. CUBIC CURVES

Cubic curves are transformed into the following three types of
curves by complex projective transformations.
cuspidal cubic

y 3




nodal cubic
yP— Xz +1)=0




non-singular elliptic curve

yP —z(z — 1)@+ N =0,A#£0,—1
n

.
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4. ALGEBRAIC PLANE CURVES

Any irreducible polynomials in two variables f(x,y) define al-
oebraic plane curves. The degree of the polynomial is the degree
of the curve, which turns out to be the number of common points
of the curve and a straight line, namely, a curve of degree 1.
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5. RATIONAL CURVES

[f the defining equation f(z,y) is parametrized by rational
functions is called a rational curve.

Rational curves are simple ones among algebraic curves.

In addition to degree, algebraic curves have another invariant
called genus, which was introduced by Riemann.

algebraic curves are rational if and only the genus vanishes.

The genus 1s defined to be the maximal number of linearly
independent regular 1-forms of the curve.
In order to define regular differential 1-forms, one has to a
nonsingular curve, which is derived by resolving the singularity
of the curve.



0. BIRATIONAL TRANSFORMATIONS

The following is a very simple example of birational transfor-
mations.

The system

o' =1z,

oy =y+a’
1s rewritten as

o1 =21

oy =y — 22

2

The parabola y = —x* is transformed into a line by the bira-

tional transformation.



In general, rational expressions P(x,y), Q(x,y) define the ra-
tional transtormation.

o1’ = P(x,y),

® y, — Q<:U7 y)
Moreover, if the inverse transformation exists, it is the birational
transtormation, called Cremona transformation,



6.1. curves of degree 4. Curves C of degree 4 are classified
into the following four types according to Kodaira dimension
k| D] and genus ¢,D being the nonsingular model of D.

e g = 3. Then C' is non-singular and x = 2. plane curves of
general type.

e g = 2. Then C has a double point and x = 1. By Cremona
transformation, C' is transformed into a hyperelliptic plane
curve.

e g = 1. Then C has 2 double points and x = 0. By Cremona
transformation,C' is transformed into a nonsingular cubic; an
elliptic plane curve.

eg = 0. Then K = —oc0. By Cremona transformation, C' is
transformed into a line.



Curves with degree greater than five are much more compli-
cated, which will be explained later.

However, Using x , they are classified into the following four
types according to the value of x, which take on of 2,1,0, —o0.

By the way, cubic curves have k = 0, —oo0.

Here, we recall Kodaira dimension.



7. Q.T

The fundamental quadratic transformation I" between the pro-
jective plane P2 is defined by

Yo=AX1X9, Y1 =XpXo, Yo= XX
By Q.T, a plane curve C of degree d is transformed into a
plane curve C’.



FIGURE 2

Ex. If C is a quartic with three double points Fy, P, P», then
C’ turns out to be a conic.



7.1. Noether’s formula. Suppose that C' is a curve of degree
d with singular points with multiplicites vy, v, 19, - - - , 1 among
whichvg > vy 219> -+ 2> 1y

If C has singular points with multiplicities vg, vy, 19 at Py, P, P>.then
C’ has multiplicities v/, V{, ' at Qp, Q1, Qo where

V(,):d—Vl—VQ, y{zd—yo—yg, VéZd—Vl—VQ
Here, d’ = 2d — vy — 11 — vo. (Noether’s formula)
In particular, if d’ < d,then C’ looks much simpler than C.

d' < d if and only d < vy + v + 1.
d < vy + v1 + vo 1s called Noether’s inequality.



However, the curve defined by z = cos66,y = cos56 has
degree 6 and 10 double points.

Since vy = v] = vy = 2, it follows that d’ = 2d—vyg—vi—1p =
12 — 6 =0.

Thus C’ does not look simpler than C.



For a singular rational curve C' on P2, after a finite number
of blowing ups we get a nonsingular rational surface S and a
nonsingular curve D which is the proper transform of C'.

Say C' has degree d and singular points with multiplicites
Vo, V1, V9, s With vg 2 v 2 09 2 -+ 2> 1y
Then
D2:d2—u§—V12—-~—u?

[n this case , we say that C' has the numerical type |d; vy, V1, 12, - - -



Fact 3. If C satisfies that D? > —3. C' is tranformed into a
line on P2 by a Cremona transformation.

NB:

e Curves with type [5; 2% satisty
k[D] =00, D*=25—4-6=1.

e Curves with type [6; 21V] satisfy
k[D] =0,D?=36—4-10= —4.

e Curves with type [7; 21°] satisfy
k[D]=2,D%>=49 —4-15 = —11.
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7.2. Nagata. In 1960, M.Nagata( who passed away in 2008)
showed that:
Let D be an elliptic curve on a nonsingular rational surface S

Then D? < 9.
If D? =9 then (S, D) is transformed into (C3, P?).
Here C; means a nonsingular plane curve of degree d.



7.3. Hartshorne. In 1970 R.Hartshorne showed that if g > 1
then D? < 4¢g + 4.

Moreover, if hyperelliptic curves defined by y2 —
aj) (distinct roots) satisfy D? =4g+4.

H2_9+1

j=1 (%~

Later it was shown that curves with D? < 4¢ + 4 turn out to
be such hyperelliptic curves or a curve of [4;1].

Indeed, D? = 16, ¢ = 3 by applying the theory of minimal
models.



7.4. Coolidge. In 1928,Coolidge studied plane curves C' and
itroduced the notion called the adjoint systems of special index

7, which are defined to be yKg+ D, 7> 1.

Coolidge:
If D is rational and [2K ¢+ D| = (), then D is tranformed into
a line on P2 by a Cremona transformation

This looks like a Castelnuovo’ criterion of rational surtaces
which claims

S is a rational surface if and only if P»(S) = 0, dim H'(S, Q1) =
0.



In 1929 | the great(economic) recession happened.
During 30’s , people around the world had hard times.

At that time, American geometers developed Cremonian ge-
ometry.

They studied properties of plane curves which are invariant
under Cremona transformations.



Now, let me introduce a modern version (revival) of Cremonian
geometry.

In Cremonian geometry, pairs (S, C') of nonsingular rational
surfaces S and curves C' C S are objects of the study.

For pairs (S, C') where C' is nonsingular, D stands for C.



8. ENCOUNTER WITH GENUS

In 1959, I was a highschool student, at the library for teachers
. I'read a book “Mathematics for citizens’ edited by the Academy
USSR and then looked at Riemann surfaces and genera, which
seemed very beautiful.

I had a dream :; someday, I would study them and understand
the properties of genera in detail.

Then, I became a university student and got friends with
oreat interests of mathematics and theoretical physics, includ-
ing Takuro Shintani, Kenich Yoshida, Motohiko Yoshimura.



When I was a junior, a famous professor Akizuki visited Ochan-
omizu women University:.

They said boys could come into the women university and were
able to listen to his lecture.

At he beginning, he said “ You may know degree of curves,
but Geschlecht 1s much more important ”.




For example, curves of degree n have genus smaller than (n_l)Q(n_Z) +

l.
If it’s nonsingular, the genus coincides with (n—1)2(n—2) .




9. PROF KAWADA

%Wﬂfr/ R awada

FiGure 5. kawada

As a senior, I was a member of prof Kawada’s seminar.
The text 1s a lecture note on schemes by Dieudonne in English.
The theory of schemes were created by A.Grothendieck.



FIGURE 6. Grothendieck



When I was a graduate student, young bright professor ap-
peared, whose name 1s Michio Kuga.

One day, he asked me “ Do you know Fermat’s last theorem
in the case of polynomials’

suddenly, I answered, * Use genus, the answer 1s immediate.
If n > 3, then genus is positive. No rational solution.”

I was confident that genera are important and decided to study
them.



9.1. case of algebraic curves. If g = 0 then algebraic curves
are rational curves; and the converse is true.

If g = 1 then algebraic curves turn out to be elliptic curves;
and the converse is true.



9.2. case of algebraic surfaces. Algebraic surfaces have dif-
ferent kind of genera: geometric genus pg, arithmetic genus pg,
linear genus p; and so on.

Rational surfaces have p; = pg = 0. But the converse 1s not
true.

There exit much more complicated genera like P>, P3, Py, Fj,.
Rational surfaces have P» = p, = Oand the converse is true.
Ruled surfaces have Py = Fg = 0 and the converse is true.



For a point p of an algebraic surface, one can replace p by a
line E. E is a projective line with E% = —1.

Such curves are called —1 curve, or an exceptional curve of the
first kind. If .S have no —1 curves, S becomes a minimal model.

Indeed, in this case, a canonical divisor K g is nef.l.e., inter-
section of K¢ with any curve on .S is non-negative.

Except for rational surfaces and ruled surfaces they have min-
1mal models, which are central results of Zariski’s theory of min-
imal models.

His theory have been successfully extended to the theory of
complex analytic surfaces by Kodaira.



9.3. Shafarevich. When I was a graduate student, Kawada
introduced a seminary note edited by students of Shafarevich
such as Tyrin, Moishezohn.

It was a English translation from Russian text.
But the translator did not know mathematics at all.
He learned Russian while he stayed in a concentration camp

after WW2.

In that seminar, from plurigenera, an invariant < was intro-

duced.

In the cases Kk = 0 or Kk = 1, structure of surfaces have been
determined easily.
Then I read compact surtaces [, II.III by Kodaira.



9.4. Kodaira and Spencer. When I was a graduate student,
Kodaira visited University of Tokyo in 1967. Next year he came
back to Japan as protessor of U. Tokyo.
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9.5. Deformation and plurigenera. Joint work of Kodaira
and Spencer on deformation of complex structures is very popu-
lar. Moreover.in the classification of complex surfaces, P, play
important roles.

Then Kodaira was professor of U.Tokyo and was as an assis-
tant.

I asked Kodaira

* Plurigenera Py, have to be invariant under deformation. Is
this clear 7”

Kodaira replied.

“ I have never consider such problem. It may be true.

”



m(m—1)

If £k =2 and minimal, then Py, = —= K?+1+p, by Ko-
daira’s vanishing theorem, which imply deformation invariance
of plurigenera.

Using this and classificaton of algebraic surfaces, I proved that
plurigenera are invariant under deformation.

On the other hand, Zarisiki developed the theory of divisors
on an algebraic surface.

For a divisor D, one had complete linear systems |mD| and
the dimension h’(mD) = dim |mD| + 1.

He investigated h(mD) as a function of m on a surface. In
general, this is not a quadratic function(polynomial).



Meanwhile, I started to study h’(mD) for divisors D on alge-
braic varieties V' of dimension n.

Theorem 1. If there exists my > 0 with h’(mgD) > 0, then
there exists my and o, 8 such that such that

am® < hY(mmgD) < Bm”

for m > mq, where k is a nonnegative integer.

Since x depends on V' and D, k is written as x(V, D), which
is called D— dimension of V.



On the other hand, if A’(mD) = 0 for any m > 0, then
k(V,D) = —o0.

Applying this for D = Ky, we have canonical (divisor) di-
mension x(V, Ky/), which is written simply (V).

In this way,x in Shafarevich seminar is generalized.

For n— dimensional variety V', k(V) = —00,0,1,2,--- ., n
Thus, varieties are classified into n + 2 basic types.

I[f 0 < k(V) < n, there exist a fiber space f : V* — W such
that V* is birationally equivalent to V',
W is an algebraic variety of dimension s and general fibers

Vi = fHw) have (V) = 0.



9.6. birational classification of algebraic surfaces. This
result 1s a typical case of birational classification of algebraic
surfaces S.

(1) If k(S) = —o0, then S birationally equivalent to either ra-
tional surfaces (g = 0) or irrational ruled surfaces (g > 0).

(2) If k(S) = 0, then S is birationally equivalent to K3 surfaces
. Enriques surfaces (g = 0) or abelian surfaces, hyperelliptic
surfaces (g = 1, 2).

(3) If K(S) =1, then S is an elliptic surface of general type.

(4) If K(S) =2, then S is called a surface of general type.



The similar results for surfaces are expected to hold true for
higher dimensional cases:

For example, if f : V' — W is surjective and general fibers V;,
are connected then the following inequalities expected to hold.

K(Vw) +dimW > k(V) > k(Vy) + &(W).
The left hand inequality is easily verified. But The right hand
seems hard to prove.

[f V is birationally equivalent to an abelian variety then ¢(V') =
(the dimension of H'(V,y)) and (V) = 0,



In 1968 | I told the idea and basic results to Kodaira.

Kodaira said * I have never had such an idea, but your ideas
seem OK.”

[n this way, the results of x(V, D) turns out to be my thesis.

At that time, everyday, around 5 o’clock, Kodaira knocked the
door of my office, and said “ It’s time to go home. ”

Then we visited a coffee shop near the university and drank
and had cakes, we talked about one hour every time.

The themes of his talk have wide range, including physics,
science, future of our civilization, shortage ot gas and so on.



On an evening, I said to him.

[ wish to call Kodaira dimension for x(V') instead of canonical
dimension, because the notion started from Kodaira’s work.

Kodaira smiled and said nothing.



10. PROF ATIYAH

Suggested by Kodaira, I would go to IAS at Princeton as tem-
porary member.

So I sent a letter to prof Atiyah with the research project, in
which Kodaira dimension plays central role.

In replying letter, Atiyah told me that Prof Moishezohn has
the same idea as yours.

I was shocked , because Moishezohn 1s an excellent mathe-
matician and one of authors of Shafarevich seminary note.

Later ,classification theory of higher dimensional algebraic va-
rieties developed with the work by K.Ueno, Y.Miyaoka, T .Fujita,S.Mori,Y.Kaw
M.Reid,Viehweg, J.Kollar and so on.



Including the deformation invariance of x(V'), the most parts
of the expected results have been verified thanks to the efforts of
many mathematicians.

On the other hand, Moishezohn succeeded in leaving USSR
and I met him at Tokyo.

We had enough time to talk on politics and dayly lives of
citizens in USSR.

He got a position in Israel and then became a professor of
University of Utah.

Suddenly he died of illness.



In 1979, Miles Reid gave me a letter of Shafarevich, in which
Shafarevich inserted a message to Western countries.

He claims in that message, under the Soviet political system,
mathematicians had very hard times.

Reid told me the message should be published in some Japan-
ese popular magazine. So I tried and finally the very popular
magazine BungeiShunju agreed to publish it as soon as possible.

After the magazine was published, I sent a letter to Shafare-
vich. But no reply at all.



10.1. Wikipedia. Later on, the concept of Kodaira dimension
becomes very popular.
For instance, in the Wikipedia:

In algebraic geometry, the Kodaira dimension k(X) mea-
sures the size of the canonical model of a projective variety
X.

Kodaira dimension s named for Kunihiko Kodaira.

The name and the notation k were introduced by Igor Sha-
farevich wn the seminar Shafarevich 1965.

In 1995, Shafarevich was invited to be a keynote speaker of
the second Asian Congress of Mathematics.

This 1s the first occasion to meet him. He thanked me for the
letter that I sent before.



In his keynote speech, he mentioned 1taka variety and Kodaira
dimension.

Proceedings of the Second Asian Mathematical Conference, 1995

ON SOME ARITHMETIC PROPERTIES OF ALGEBRAIC
VARIETIES

IGOR R. SHAFAREVICH
Steklov Mathematical Institute

Russian Academy of Sciences
Moscow 117 966, Russia

1. Introduction

I'will try to give a short survey of what is called Arithmetics of “Algebraic
Varieties” — its main results and problems.

Let X C P" be an algebraic variety defined in the projective space PV by
equations



This description can be easily generalised to algebraic varieties of arbi-
trary dimension n. Namely, we consider rational differential forms of type
f(dug A ... Adu,)™ for some fixed system of algebraically independent ratio-
nal functions u;,...,u, on X, a rational function f and m > 1. All regular
forms (i.e. having no poles on X) for fixed weight m form a finite dimensional
vector space {1, and in the same way as before we obtain a rational mapping
om : X = P(Q,,) into a projective space. It can be proved that for all m
sufficiently large and divisible by a fixed integer, the (closure of the) varieties
©wm(X) are birationally isomorphic. So (up to birational isomorphism) there
exists a single variety I(X) isomorphic to all these ¢,,(X), which is called the
Iitaka variety of X, and a single mapping

e 0 X e I( X) (3)

of X onto I(X). Of course, if all ,, = 0 neither the Ilitaka variety nor the
mapping ¢ are defined. The dimension k of the variety I'(X) is called the
Kodaira dimension of X. If all §2,,, = 0 for m > 1 and I(X) is not defined, we
set kK = —00. So k can take the n + 2 values Kk = —00,0,1,... ,n.

(In this short survey we completely ignore the difficulties which arise in
connection with the fact that the variety I(X) and the fibres of the mapping
v may have singular points even when X has none. These difficulties are
overcome in cases n = 2 and n = 3 and there exists a program of resolving
them in the general case, known as “Mori’s program”.)

g - ae B 1 - )



11. LOGARITHMIC KODAIRA DIMENSION

In 1971-72 I stayed at IAS and started the research of varieties
whose universal cover is the n— dimensional afline space.

To study the ramification of threefolds, I introduced the notion
of logarithmic Kodaira dimension of quasi—projective varieties..

Moreover, logarithmic plurigenera and strict rational maps are
itroduced.

Actually, given nonsingular quasi-projective variety V', one has
projective variety V and a divisor D on V such that the com-

plement V — D is V.



Take a nonsingular V™ and a birational morphism & : ViV
such that the total inverse image D* = p~1(D) is a divisor of
simple normal crossings.

Then it was proved that H O(m(KV* + D*)) depends upon

only V. independent of V' and D*.

The dimension H O(m(KV* + D)) is called the logarithmic
plurigenera of V.

In this way, a new birational geometry was born;

it is the revival of the classical birational geometry of projective
varieties

The new geometry is successtully applied to the study of affine
varieties.



However, if D is irreducible, one may consider the proper in-
verse image Df = p1[D] instead of the total inverse image
pH(D).

Then the complement of D? is not proper birationally equiv-
alent to V.

However, the pairs (7*,D*) are birationally equivalent to
(V, D)

This is also anther development of birational geometry, that is
the geometric study of DVR(discrete valuation ring) instead of
function fields.

If it is 2— dimensional, this turns out to be birational geometry
of pairs of algebraic curves C'and surfacesS such that C' C S.



If surfaces are rational, this is birational geometry of algebraic
plane curves.

h:S — 51,

FIGURE 10. ACHHRE/MHE

Given a nonsingular projective algebraic rational surface S and
a curve C on S , we have a notion of birational equivalence.



Two pairs (S,C) and (57, C) are birationally equivalent, if
there exists birational map h : .S — Sy such that the proper

transform h|C] of C' coincides with C. Then they are called
birationally equivalent pairs.



If C' is nonsingular, we use D instead of C' .
Birational geometry of such pairs is called Cremonian geome-
try.

Given (S, D), one has mixed plurigenera which is defined to
be PpolD] = dim |mKg+ aD| + 1.

These are invariant under birational equivalence.

Py | D] turns out to be logarithmic m genera Py, (S — D) of
an open surface . S — D.

Moreover, the Kodaira dimension of the pair is defined to be
kD] =&(S—-D) .

Thus k|D] = k(S, Z), where Z = Kg+ D.



Since S is rational, it follows that P 1| D] = g(D). Here g(D)
is the genus of D.



Here is a classification of pairs when x|D] < 2.
k| D] is defined to be Z— dimension, whrere Z = K¢+ D.

o [f K|D|] = —oo then (S, D) is birationally equivalent to
(P2 Line).

o If k|D| = 0 then (S, D) is birationally equivalent to either
(P2,C3), Cs3 being a nonsingular cubic or (P?,Cg), Cg being
a sextic curve with 10 double point.

o If k| D| =1 then (5, D) is birationally equivalent to

1) (P?,Cs,,), C3 being a curve of degree 3m with nine m—
ple points or

2) (PQ,Cém), C, being a curve of degree 3m with nine m—
ple points and a double point,

3) (P2.H g), Hg being a hyperellitptic curve defined by Y2 —
(z — a1)(z — ag)(r — aggy2) = 0, g > 2, where a; are
mutually different to each other.



Hence, hereafter assume that x|D]| = 2.

y 3




The curve defined by x = cos(6t),y = cos(7t) is a rational
curve of degree 7, which has 15 double points. This is the simplest
example of rational curves with x| D] = 2

If (S, D) is relatively minimal, it’s minimal.

So it suffices to study structures of minimal models (S, D).

Theorem 2. Suppose that o > 7. Then
0P271[D] :ZQ—§+1:A+1.
e P31D|=3A-a+1=Q0—-w+1.

Here, =g —1,A=Z? -G, a = 45 — D?,
(= (3Z —2D) - Z = 3Z° — 43. Moreover, w = 3§ — D?.



12. #— MINIMALITY

Minimal pairs are obtained from some kind of singular models,
namely, # minimal pairs which will be defined below.

Any nontrivial P'— bundle over P! has a section Ay, with
negative self intersection number, which is denoted by a symbol

Y, where —B = Axo? if B > 0. £ 5 is said to be a Hirzebruch
surface of degree B after Kodaira.

Let Xy denote the product of two projective lines.
The Picard group of X p is generated by a section Ay and

a fiber F. = p~t(c¢) of the P1— bundle, where ¢ € P! and
p:lp— Pl is the projection.



Let C' be an irreducible curve on X p. Then C' ~ cAx +
eF., for some o and e. Here the symbol ~ means the linear
equivalence between divisors. We have C'- F. = o0 and C'- Ay =
e — B - 0. Note that k|Ax| = —00.

Hereafter, suppose that C' # Ay. Thus C-Aqg = e—B-0 > 0
and hence, e > Bo.



By vi,19,- - -, vy we denote the multiplicities of all singular

points (including infinitely near singular points) of C' where 1y >
Vg 2 vt 2 V.

——

64
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The symbol |0 * e, B; vy, v, - -, ] is said to be the type of
(Xp,C).



Definition 1. the pair (X g, C) is said to be # minimal ,
of

o0 > 2vy and e — o > Buy;

e moreover, if B =1 and r =0 then assume e — o > 1.

Using elementary transformations, we get

Theorem 3. If D is not transformed into a line on P? by
Cremona transformations, then k|D] > 0.

Minimal pair (S, D) is obtained from a # minimal pair (X5, C)
by shortest resolution of singularities of C' using blowing ups
except for (S,D) = (P?%,Cy), Cy being a nonsingular curve.



13. BASIC RESULTS

Introduce ¥ by YV = ] yvj and X by X = ZT_I ] .
Moreover, defining w =4 — oyg,we get w=4if B # 1. w = 3,
otherwise.

Let k£ denote wp + 2u.

Proposﬂslon 1. Suppwe that B < 2. Then
(1) X = 8v? + 2kvy + k +wy — 27,
2)Y =8v; + k + wy.

Here k = kp — 2p%, wy =w —7.



14. INVARIANTS OF THREE GENERATIONS

Birational invariants are classified into three generations.

TABLE 1. three generations

Ist generation

c, Vi, Vo, - 7I/7°70-7B7d

k=(4—06p1)p+2uk=p(k—2p)

2nd generation

g = genus(Riemann),

3rd generation

four fundamental invariants o, w, A, {2

P 1|D](Coolidge,1928), P3 1| D], P a| D],




(D+3K)-D A_(D+2K)-Z
% T % ’

a=(D+2K)-D,w=

O=(D+3K)-Z
Z =D+ Kg,Kg : canonical divisors

Note that genus was defined by Riemann.

_(D+K).D_Z-D
g— p— = —.

dogma (dogmatic opinion)
Each fundamental invariant of 3rd generation determines bi-
rational invariants.



14.1. pairs with w =1, 2.

Under the assumption o > 7, we show the list of types of pairs
with w = 1,2, 3,4, 5, 6. However, associated types are omitted,
for simplicity.

TABLE 2. w=1,2

Ww| o type genus
L[ 7] [7%9,1,1] | 27
2171 [7%9,1;2] | 26
218 [8%8;47] 7
28| [8%8:47.3] | 4
218 [8%8473] | 1
2110 [10%11;5% | 0
2112/[12%12:67,5,4]| 0



14.2. pairs with w = 3.

TABLE 3. w =3

type

genus

Lo W W W W W W W W wwwlE

0o 0o o 0o =19

10
10
12
14
15
16
20

[7%9,1;27]
8 % 9; 4]

8 % 8;47, 2]
8% 8;47,3,2]
8% 8;47, 32, 2]

10 % 10; 57, 4, 3]
[10 % 10; 57, 4]
[12 % 12; 69, 57]

14 % 14; 77,6, 4]
[15 % 22, 1; 7]

[16 * 16; 89, 7%, 6]

20 % 20; 107, 9, 5]

(N
Ot

O O O = = O N O Wwo o



Assume that ¢ > 7,11 > 3.

fundamental problems

(1) Enumerate types for given birational invariants of 3rd gen-
eration
(2) relationships between birational invariants of 3rd generation
and those of 2nd generation
(a) relationships between w and g.
(b) relationships between A and g.
(3) relationships between birational invariants of 3rd generation
and those of 1st generation
(a) relationships between w and k; w and o;
(b) relationships between A and k; A and o;



examples obtained so far.
(1) The first inequalities o < (a + 3)(a + 2) (By O.Matsuda).
(2) If the first equalities 0 = (w + 1)(w + 2) fail, prove o <
w w1
(3) The first inequalities in two variables o < w% +wy + 2+
2g(1122 inequality) .



14.3. curves of degree 5. Plane curves C' of degree 5 are
classified into the following four types according to x[D] and g.

®K =2

(1) g = 6. Then C' is a non-singular plane curves.

(2) g = 5. Then C' has a double point. The type is [3%5, 1; 1].
(3) g = 4. Then C' has 2 double points. The type is [3 * 3; 1].
(4) g = 3. Then C has 3 double points. The type is [3x4, 1; 1].
or =1

(1) g = 3. C has a triple point and x = 1, the type [2%5, 1; 1].
) g = 2. C has a triple point and a double point with Kk =1,
the type [2 % 3, 1; 1].
= 0 Then ¢ = 1 and by Cremona transformation the
curves are transformed into a non-singular cubic.
e v = —00. Then g = 0 and By Cremona transformation the
curves are transformed into a line.



15. SECOND INEQUALITIES
Assume that o > 7.

Theorem 4. (1) < (w+ 1)(w + 2).
(2) If o = (w+1)(w+2) ,then [2v] % 2vy; 1/17, v1 — 1, vy], Here,

= VT(VE_D and w = vy — 2.

B)Ifo < (w+1)(w+2),then 0 < w(w+1)+2 except for the
following;
(a) (w=2), [10 % 11;57];
(b) (w =3), [15*22,1;77] and [16 x 16;8°, 7%, 6];

(4) If o < w(w+1)+2 then 0 < w(w —1)+4 except for the
following;

(a) (w=3,g=1), [12%12;6°, 5];
(b) (w=4,g=1), [18%18;97,7,6];
(c) (w=4,g=0), [19*19;97];

(d) (w=4g = 0), [20 % 20;10°,9°, §]



Theorem 5. (1) o < (a+3)(a+2) ( By O.Matsuda);
2)If 0 = (a+ 3)(a + 2) then , [2v; % 2y1;yl7,u1 — 1, 1y],

v (vp—1)

Here,v1 = and w = v,y — 2.
(3)o < a? + (1 — 47) o + 4G% + 2;
(4) If g > 0 then 0 < ala+ 1)+ 2;
B)IF 0 < (a+3)(a+2) then o < ala+ 1)+ 2,except for
the following;,
(a) (. =1), [10% 11;57] ;
(b) (v =2), [15%22,1;77] , [16 * 16;8%, 72, 6] ;
(c) (@ =3), [19%19;97) , [19 % 38,2:97], [20 % 20; 10°, 93, 8],
22 % 22: 110,102, 7], [22 % 22,117, 87] ;
(d) (o = 4), [23 % 35,1;117], [24 % 24;12% 11%,10], [24 *
25,127,107, [25%37, 1; 125, 9], [28%29; 145, 8], [30%30; 157, 13, §]

Do

(e) (v =15), [36 % 37;18%,9], [38 % 38:197,17,9];
(f) (v = 6). [46 % 46: 236,222 10].



In the case when B <2, weput eg =1 —|—%.
Theorem 6. If 0 > 7,11 > 3 then
(1) e<ep-(w+1)(w+2),
(2) e<ep-(A+3)(A+2).

Given w or A, e is bounded. Thus there are a finite number
of types of #— minimal pairs.



X =" Y =" v, Z=nY X
Proposition 2. If B < 2 then

o X =812+ 2kvy + k +w) — 27,

oY =8 +k+wi.

Here, k = kp — 2p%, wi = w — qg.



16. BESTIMATE OF k IN TERMS OF w

Assume o > 7, v1 > 3.

It B>3thenw—k>0—1.

Thusw+1> 0+ k.

o + k 1s bounded by w.

Since o > 7, it follows that w — k > 6.
Whenw — k < 7, one can suppose that B < 2.

Proposition 3.k < w, If g > 0 then k < w — 1.



16.1. The case when w — k = 0.
If w— k& =0 then g =0 and the types are as follows:

o) If p=0then [10% 11;57] . k = 2.

o [l) If p=1, then
1) [(15 4 8u) * (22 + 13u), 1; (7 + 4u)”], (k = 3,5,7,9,-- )
2) [(19 + 8u) * (19 + 9u); (9 + 4u)”], Here u > 0.(k =
4,6,8,10,---)

oIIl) If p > 1 then p = 2 and moreover, [28 * 41,1;13”].
w =k =0.



16.2. The case when w =k + 1.
Assume i1 =w — k = 1.
II.
(1) [(9 + 4u) * (13 + Tu), 1; (4 + 2u)'Y), where w = 4+ 2u, g = 0
k= 3+ 2u.
(2) [(11 4 4u) * (11 + 5u); (5 + 2u)'Y], where w = 5 + 2u, g = 0
and k =4 + 2u.
Here,p=1,w=k—-1=14,6,8,10,--- ,5,7,9,11,--- ,7,25,26,33,--- .



I11.
g = 0.

). equimultiple.
109 * 166, 1; 527

121 % 177, 1; 56,

1
(1)
(2)
(3)1
(4) [136 * 144; 66”] .
(5)
(6)
(7)

vy — 1
(1) [40 * 40; 19%, 18].

136 % 212, 1; 66 .

, where w = 26, k = 25.
where w = 28, k = 27.
where w = 33, k = 32, Z2 = 31.
where w = 33,k = 32, Z2 = 31.

106 * 106; 50%]. where w = 25,k = 24.
106 * 159, 1; 509]. where w = 25, k = 24.
16 % 23,1; 71Y]. where w =7,k = 6.

, where w =9,k = 8.

(2) [40 * 60, 1; 19, 18]. , where w = 9.k = 8.
(3) [45 * 66, 1;21%, 20]. , where w = 10,k = 9.

Here, p > 2.



2). The case when g =1
) [36 * 36; 179]., where w = 9, k = 8.

) [41 % 60, 1;197]., where w = 10, k = 9.
(3) [36 * 54, 1;17Y]., where w = 9, k = 8.
3
)

). The case when g = 2
(1)[8 % 9;47]. , where w =3,k = 2.



17. INVARIANT 2

Let 1Y — X be denoted by Z
Then Z = 1Y — X = Zyl_ (1 —7)7t; = 0, t; being the
number of j— ple singular pomts on C.

(3) 0<Z=v(w—F—Fk)—k—w +27.



17.1. invariant Z*. Hereafter suppose that v; > 3.
Introducing invariants 7; and ¥ by 7; = v; — 1 and ¥ =
Z;‘:l v, respectively, we obtain Y =Y —r and

Y =8u+k+ A

Moreover, introduce an invariant X by

)
X=>7"=X-2Y+r
=1

which satisfies that
X =8u’+2ku+k— A —2g.
Here, for simplicity, let p stand vy. Thus pu > 2.



17.2. case when B > 2. However, it B > 2. we have funda-
mental equalities :
(1)Y = Boo + 8u + k + Aj,
(2) X = Bao(o — 2) + 8p” + 2kp + k — Ay — 23,
where Bo = B — 2 for B > 2.
Moreover, it B < 2, we put By = 0.

Defining an invariant Z* to be pY — X, we obtain
—;Lk—/%—FVlAl—I—Qg—BQO(O—Q—;L) = Z*

and
" —1

Z¥= (v — )G — ;.

J=2

Z"=(p—Dy1+2(p —2)y2+3(p —3)ys +... =2 0,
where y1 =to+ 1y, y9 =t3+1, 1,ys=ts+1¢, 2, --.



Moreover, we get
Boo(oc —2—p) < —uk — k+ V1Al + 2.
Proposition 4. If B > 3, then
(4) o0 —2—p) <Ay +25 — pk — k.

Suppose that p > 0. Then o —2—p > 1+2(pu+1) =2 —p =
1+ pand £ — k£ > —2. Hence,

olp+1)<oloc—2—pu) <viA|+29— pk —k.



However,

VA +29 —pk —k = (p+1DA = (p+ 1Dk + (1 = p)g —q,
where ¢ = k — k > —2.

Therefore

o(p+1) < (p+1)(A=Fk)+ (1= p)g+2.
[fg >0, then (6 — (A —k))(n+1) < 2. Hence, 0 < A — k.
If g = —1, then
oclp+ ) <(p+D)A-k+p+l=p+1)A-k+1)
Hence, 0 < A —k+ 1.

By u > 2, we get 0 > 7 and so k 4+ 6 < A. Thus we obtain
the next result.

Proposition 5. [f B >3 andp >0, theno +k —1 < A.
In particular, kK +6 < A.



18. HARTSHORNE’S IDENTITIES

Suggested by Hartshorne, consider a divisor 2D + 0 Kg. The
intersection numbers of this and divisorD and Z, will produce
useful 1dentities among invariants.

By 6 we denote (2C 4+ 0Kj) - C. From (2D + 0Kg) - D =
20G — (0 — 2)D? it follows that
20G — (0 — 2)D? = 0y + pY +2Z.
By the way,
672 — (2C-|—O‘K0) - C
=(cZy— (0 —2)C)-C
— 20y — (o — 2)C?
— (0B —20 — B)— (0 —2)0B

~

= o(B — 20).



It B > 2 then B—20= 2u + (B — 2)o > 0. In particular, if
B > 3 then B —20 > 0.
It B=0then B — 20 =2u > 0.

However, if B = 1 then B—2 = 2e — 30
In the case when 2e — 30 > 0, then 69 > 0.

In the case when 2e — 30 < 0, letting L = —(2¢ — 30) > 0,
we consider 3 = (3C + eKj) - C.



Then
53 — (3C-|— GKQ) - C
= (eZy— (e —3)C)-C
= 2¢g, — (e — 3)C?
— ¢(0B — 20 — B) — (e — 3)oB
— —20¢ — eB + 30B
—20¢ — 2¢* + eo + 30(2e — o)
o(2e — 30) — e(2e — 30)
= L(e — o)
= L(u +11).

Thus 63 = L(u + v1) > 3L > 0.



Moreover,

2eq — (e — S)D2 — 03 + (p—l—u)Y—FSZ.
We say that the sign of the type (S, D) is RH (4 if either
B#1orB=1and2e—30>0.

Otherwise, we say that the sign of the type is RH(_), namely
in the case when B =1 and 2e — 30 < 0.

Instead of D, we take Z. Then (2D + 0Kg) - Z = 0Z? —
2g(0 — 2) and by 6™ we denote (2C + 0 Ky) - Z.
Thus
0 2% — 2G(0 — 2) = 0% + pY +22*.



We want to show that #>* > 0 in the case of RH( +): Actually,
02" = (2C + o Ky) - Zy

=(0Zy— (0 —2)C) - Zy

= 075 — 2g5(0 — 2)

—o(0B —40 —2B+8) — (0 — 2)(6B — 20 — B +2)

—~

= (0 —2)(B — 20)

Since 2™ = (0 —2)(e — Bo+2—20) = (0 —2)(2u+ Byo) , it
follows that 65" = (0 — 2)(2u 4+ Byo) > 8u > 0, if B # 1.

If B =1 then 65" = (0 — 2)(2e — 30).

Hence, if 2¢ — 30 > 0, then 65* > 4(2e — 30) > 0.

In the case when the sign of the type is RH<_>, namely if
2e — 30 = —L is negative, consider (3C' + eKy) - Zj, which we
denote by 63*.



Then
eZ? —2(e—3)g =03+ (p+u)Y +32*.
By the way;,
93* = (SC + GKQ) A

= (eZy— (e —3))C - Zy

— eZ> — 2go(e — 3)

—¢(0B —40 —2B +8) — (¢ — 3)(0B — 20 — B)
e(2+ 50 —2e) — 30(0 + 1)
=e(2+20+ L) —30(0 +1)
=2e(c+1)—30(c+1)+eL
= (0 +1)(2¢ —30) + eL
=Le—0—1)
=Lu+vy—1)>2L(u+2) > 0.



Dear Shigeru-san,

Nice to hear from you.

I have retired from teaching, but still do mathematics and
travel to conferences.

I am curious about ”Hartshorne’s identities” .

Can you point me to which paper they are in, on what page?

i found many papers on your website.

With best wishes,

Robin Hartshorne



19. INVARIANT w
Since w = 3§ — D?, it follows that

209 — (0 = 2)D* = 207 + (0 — 2)(w — 37)
= (0 —2)w — (0 — 6)7.

Therefore,
2D +0Kg)-D = (0 —2)w— (0 —6)g and it follows that
(5) (0 — 2w — (0 —6)7 =0y +pY +2Z.

fs + pY + 22 is denoted by ©5. Thus, when the signature of
type 1s RH<+>, then

(0 —2)w > (0 — 6)7.



Hence, it 0 > 8,7 > 3 then g < 3w.
When the signature of the type is RH(_>7 then

2¢g — (e — 3)D? = 2¢5 + (e — 3)(w — 37)
= (e =3)w—(e—9)7

and hence,
(e—3)w—(e—9)7=603+(p+u)Y +3Z.
Thus,
(e —3)w > (e —9)7.
If e > 12,11 > 3 then g < 3w.



20. ESTIMATE

We shall give some estimates of ¢ in terms of w.
Assuming that vy > 3 and o > 8, we get 3w — g > 0.
Thus,denoting 3w — g by F4. Then Fy > 0.

In that follows, we shall enumerate all types of pairs (S, D)
satisfying that Fy < 9 in case the sign of the type (S, D) is
When the sign of the type is RH(_)7 then Assume that vy >

3 and e > 12. We shall enumerate all types of pairs (S, D)
satistying that Fy < 9.



First, we consider in the case of RH( 1)

20.1. case in which u > 0. Replacing 3w — g by F}, we get

(6) (0 — 6)F) —2(0 — 8)w = O,
20.2. B> 3. If B> 3, then B — 20 > ¢ and so
(7) Oy = o(B — 20) > o°.
Hence,

(0 —6)F) — 2(0 — 8)w = Oy > 0y > 02,



From 02 + 40 — 32 = (0 — 6)(0 + 10) + 28, it follows that

0> Fy, > 104+ > 10.

o—06
Therefore, in that follows we assume B < 2.

20.3. Z > 0. Suppose that Z > 0. Then Z > v; — 1 and
Y >+ —-1=2v; —1.
Hence,
(0 —6)Fy — (0 — 8)w =609 > 20 +p(2v] — 1) +2(r — 1).
By hypothesis,
p2ry — 1) +2(r — 1) =2(p+2)y; —p — 2
=(p+1)(c—p) —p—2.



Recalling that F; < 9 and assuming w > 4, we get
o —6)>2(0 —8)w+by+(p+1)(oc—p)—p—2
>80 —8)+ 20 —8w+b+(p+1)(oc—p) —p-—2.

Hence, by 0 = p + 2v1 > p + 6, we get
10+p> +2p+2 > 09+ po > 0y + p(p + 6).
Theretfore,
12 > 65 + 4p > 4p.

This implies that p < 3.

Hence, it B = 0,2 and u > 1, then

12> 09+ 4p > 2uo +4p > 2(p + 6) + 4p = 6p + 12

Thus if u > 0 then p = 0. Otherwise, p < 3.



204. RH(y. If B =1 and RH(, then 0y = (2u — p)o > 0.
By the similar argument, if 214 — p = 0 then 2u = p < 3. Hence,
u=1,p=2.

Yo —6) > 2(0 —8)w+ 20+ 0 —2.
Replacing o by 2v; we obtain
vy — 13 > (v — 4)w.

Hence,
3vy — 13 2
7 =3 — > W.
vy —4 vy —4

This induces that w < 3. But we supposed that w > 4.




20.5. RH(_). Suppose that B = 1 and 30 — 2e > 0, in other
words, the type 1s RH(_>.
By second Hartshorne’s identity,

(e—3)w—(e—9)g=03+(p+u)Y +32.
Hence, by making use of Iy = 3w — 7,

(8) (e — 9)Fy = 2(e — 12)w + Os.
We suppose that Fy < 9, for simplicity.
Then

(9) O3 = (e—9)F4—2(e—12)w < 9(e—9)—2(e—12)-4 = e+15.
By hypothesis saying that Z> 0, we obtain
Z>u—1Y > —1
Hence,
(10) O3 =634 (p+u)Y + Z03+ > (2v) — 1) + 611 — 6.



Thus,by p denoting p + u, we obtain

~ ~

O3 =05+ (p+u)Y + Z03+ > (20, — 1) + 61, — 6.

63253+]5(2V1—1)+3V1—3
=03+ (2p+ 3 +p—3
= 63+ (2p + 3)( 3p)+p 3
- +e(2ﬁ+3)_2ﬁ +6p+ 9




By the inequality (9), we obtain

- 2Pe 2P+ 6p
(11) e A A Y
3 3
Thus,
20% +6p _ ~ 2P
T s (N A

3 3

- 2(p+9

3



Therefore,

(12) 18 > 65 + 4.
However, i

O3 = (p—2u)(u+rv1) 211 23
Hence,
(13) 15 =18 — 3 > 4.

We conclude that p < 3.

1. p = 3. Then from the inequality (??), it follows that
20 =154+ 12 > 2e.



Hence,
p+ 3vie < 13.

This implies that 1 =3 and p=p+ u = 3.

Since p > 2u and 3 = p+u > 3u, it follows that p = 3, u = 0.
Moreover, c = p+2vy =9ande=p+3ry=3+3-3 =12

The type turns out to be [9 * 12, 1;3"].

g =0l —3r,w=18.

Hence, Fy = 3 + 3r. Here, r < 2.
(1)[9 %12, 1; 3] has F = 6.
(2)[9 % 12,1;3%] has Iy = 9.

2.p=2.Thenu=0and p=2. Hence,e =2+3-3=11<
12. This contradicts the hypothesis.



3. p=1 Thenu=0and p=1. Thus, v; =4 and e = 13.
Then Fy = 13, which contradicts the hypothesis.



20.6. equisingularity. Suppose that Z = 0. Then the pair
has equisingularity, in other words, ¥ = rvy.
First suppose that » > 6. Then
652 = 2uo + prvy > 2uo + 6pry.
But 6pr; = 3p(c — p) and so
9o —6) > 10(c — 8) + 20 + 3p(c — p).
Hence,
26 > 0 + 3p(o — p).
Thus,
264 3p° > 3p+1)o > (3p+ 1)(p+6).
We get 26 > 19p. Theretore, p = 1.
Therefore,
9o —6) > 2(0c — 8)w + 30 — 3.
We get
60 — 51 > 2(0c — 8)w.



Hence, 0 > 9 and
6o — 51
> 2w.

o—8

o > 9 implies that bo— gl < 6. Hence, w < 2. A contradiction.

Suppose that r < 5 Then

g=o0(c—2)4+ulc—1)— TV1<V12_ 1),
w=0(c—06)+ulc—3)— TVI(VIQ_ 3).

Hence,
Fy=20(0c —8)4+2u(c —4) —rvy(v] —4).
20(0 — 8) > 8rq(v] —4) and
Fy > 8vi(ry —4) —rvi(vy —4) = (8 —rjri(vg — 4).

If v1 >4 and r <5 then Fy > 9.



[f ry =4 and r <5 then 0 = p+8and Fy = 20(0c — 8) +
2u(c —4) =2(p+8)p+2u(p+4) > 9.

Suppose that v =3 and ¢ = p+ 6 > 8. Hence, p > 2 and so
Fy=2(64+p)(p—2)+ 2u(p+2)+3r.
If p > 3 then
Fy > 18 + 3r.
If p =2 then
Fy =8u(p+2)+ 3r.
By F;4 <9 we get ©u =0 and Fy = 3r.



21. FORMULA OF F}y
IfB = 0,2 then

Fy=0B —4B — 8o
= 20(0 — 8) + 2u(oc — 4)
= 8uy(1] —4) + 8(v) — 2)p + 2p° + 2ulp + 2(vy — 2)).

If vy = 4 then Fy = 2p? + 16p + 2u(p + 4) > 0. Hence, if
0 < Fy <10 then P =0,u =1 and Fy = 8. The type becomes
[8%9;4"] , where 0 < r < 8,

If vy = 3 then Fjy = 2p% + 8p — 24 + 2u(p + 2) > 0. Hence, if
Fy=0,0 > 8then Fy > 0.



Moreover, it p = 2, u > 0 then F; = 8u > 8.

Thus 0 < Fy < 10 then P =2, u =1 and Fy = 8. The type
becomes [8 * 9; 1].

IfB=1,e> 12 then

Iy = cB — 4B — 8¢
= 8uy(v] — 1) + 21 (3p + 2u) + p* — 12p + 2u(p — 4).

If 1 > 4 then
201 (3p+2u)+p°—12p+2u(p—1) > 8(3p+2u)+p°—12p+2u(p—14) > Su.
Thus 0 < F4 < 10 then P = 0,u = 1 and F; = 8. The type
becomes |8 % 13, 1;4"].

Ify =3,e=6+p+u>12then Fy = —24 + p(p + 2u) +
op + 4u > 0.



21.1. case in which v =0 and p > 1. Suppose that u = 0
and p > 1. N N
Moreover, suppose that Z > 0. Then Z2 > vy —1land Y >

v+ 2.
Hence,
(0 —6)F) — (0 —8)w =09 > p(ry +2)+ 2 —1).
From p(v; +2) 4+ 2(v; — 1) = % + _p2+22p_4 it follows
that
p(p2+ ) 126> 0 + (p+22)0

Hence, by o > p + 6, we get
PP+2p+52> (p+4)o > (p+4)(p+6) = p* + 10p + 24.
Hence, 28p > 8p. This implies that p < 3.



ég = 2uo + prvy > 2uo + bpry.
Finally, we consider in the case of RH(_). Rewriting the iden-
tity, we get
ég =(e—9)F; —2(e — 12)w.
From 9 > Fjand w > 4,e > p+ 9, 1t follows that

p— 3+ L)p D+ 3+ L)(p+9
1S — Lyt P 3+ )pz(p+ +3>(p+ )
Further, we get
13— L)p+9
18—Lu2( )p—l-.

Hence, 45 — 3L > (13 — L)p. This implies p < 3.

If w>0then p=p+u>3u> 3. Theretore, u = 0.

We say that the sign of the type (S, D) is RH<+) if either
B #1or B=1and2e — 30 > 0. Otherwise, we say that the
sien of the type is RH, \. namelyv in the case when B = 1 and



21.2. case in which k£ = 0. Suppose that v = p = 0 and
Z > 0. Then
(] —3)Fy > 2(r] — 4w + Zz > 8(v] —4)w + zZ
By F; <9, we obtain

v +95 2> zZ
First, suppose that Z = vy — 1. Then the type turns out to
be [2v] * 0 = 2u7y; uf_l, v1 — 1]. Here, 0 = 2.

Then
o =27l py 1y —1.
oW = Vl(V%_B)(S — T) +uv; — 2.

o [) = Vl(Vl — 4)(8 — ’l") + 2v1 — O.



If r =8 then Fy = 2v1 — 5. Assuming that Fy =21 —5 < 9,
we get 11 < 7.

TABLE 4. [2vy x 0 = 2uy; 0] 1 v — 1],

0o -1 o oS

-1 O U Wl

S Ol o | T
O ~J Ul W

11

Second, suppose that Z > v1 — 1. Then
v +5> 2 > 21 —4.
Thus, v; <9.



21.3. v1 = 9. Suppose that v1 = 9, and then
4= +5>Z > —4=14
Z=14,Z =811 + 14z + 18z 4 - - - |
Here, x1 = tg,x0 = t7 + 19, x5 =t + t3,- - -.
Thereforetr +to =1. Fy =9, w =4,q9 = 3.
However, if 7 = 1, then
3=9g=18-16—36(r — 1) — 21.
Then 25 = 3r, a contradiction.
However, if 9 = 1, then
3=9g=18-16—-36(r — 1) — 1.

Then 9(r — 1) = 71, a contradiction.



Hence, Z > 2v1 — 4. In this case, Zz > 2v; — 2. Thus vy <.



21.4. vy = 7. Then Z = 12
19 > 4F, — 6w = 12.
By 2Fy — 3w =606,w=4,F; =9, we obtain g = 3.
Note that
Z = 6z + 1029 + 1223,
Hence, 1) x1 =2, 2) x3 = 1.
1) 1 = 2. The type becomes [14 * 14; 772, 6].

3=9g=14-12—-21(r — 2) — 30.
Then
33 =14-12 —21(r — 2).
A contradiction.
2) &3 = t3 + t4 = 1. The type becomes [14 * 14; 772, 3] or
14 % 14; 772, 4].



21.5. vy = 6. Then 11 > Z = 10

12 > 4F) — 6w = 12.
By 2Fy — 3w =606,w=4,F; =9, we obtain g = 3.



21.6. vy = 5. Then F) = 40 4 4ty + 3t — dt5. It F; < 10 then
i =1.

o g =10 — (t9 + 3t3 + 6t4).

o w = 104 19 — 2i4.

o [y =5+ 4ty + 3ts.

Since g = 10 — (t9 + 3t3 + 6t4) > —1, it follows that t4 = 1,
or 0.

By Fy =5+ 4ty + 3t3 < 10 , we see that to +t3 < 1.



21.7. the case when F; < 9.

Theorem 7. Assume Fy =3w — 9 < 9. Then
(1) 1 = 3.
(a) [8 * 8; 383, 212] Fy = 3t3 + 4to; 3tg + 4ty < 9.
(b) [8%9;1], Fy =8.
(2) v = 4.
(a) [8 % 8;4% 313 212]  Fy = 3t3 + 4ty; 3tg + 4ty < 9,49 —
(6t4 + 4t3+t2) > 0.
(bﬁ*9ﬂﬂfqz&mg9.
(3)v1 =
(
(b

):m*10574]ﬁg:5;
)m*m5 4,3], Fy =8,
)m*m5 4,2],Fy =9,
)
) |
\

&

@)

(

(d
(e
(£

10*105] Fy =05,

10 10:57, 3], Fy = 8,
10 < 10- K.? 9 . — Q




22.1. invariant A. Since A = Z2? — 7, it follows that

0Z° =20 —2)g=(g+A) —2(c —2)7
=0A—(0c—4)7

Hence,
oA — (0 —4)g = 60" +pY +22Z*
When the signature of the type is RH( +)) then
oA > (0 —4)7.
If o > 6, then g < 3A.
When the signature of the type is RH(_>7 then

eZ° —2(e—3)g=e(A+7) —2(e—23)7
=eA — (e — 6)7.

Moreover,



22.2. invariants A and «. We obtain the following identities:

~

(14) (0 —2)a — 2(0 — 4)F = O,
(15) (e —3)a — 2(e — 6)g = Os.
(16) (0 — 2w — (0 — 6)7 = O.
(17) (e — 3)w — (e — 9)7 = Os.

(18) cA— (o0 —4)g =6y,



(19) eA— (e —6)g = O3".
By ©5_1* we denote 205* — O, then
20A — (00— 2)a=O9_1".
When the sign of the type is RH(+>, then ©9_1* > 0 and so
20A > (0 — 2)a..
By ©3_1* we denote 203* — O3, that is non-negative and so
2¢eA — (e — 3)a = 0O3_1".



When the sign of the type is RH _), then ©3_1" > 0 and so
2eA > (e — 3)a.

22.3. estimates.

Proposition 6. Suppose that either o0 > 8, vy > 3 or e >

19,0 > 3.

(1) If w is even, g < 3w. The identity occurs whenever [8 *
A* 1< r <7,

(2) If g < 3w then g < 3w —3. The identity occurs whenever
884", 3]*,0<r <7,

(3)Ifg < 3w — 3 then g < 3w — 5.

(4) If w is odd, theng < 3w—4. The identity occurs whenever
884" 2]* 1 <r <7,



22.4. case when k = 0. Suppose that p = v = 0. Then
(0 —6)F) — 2(0 — 8)w = Oy turns out to be

~

(1) —3)Fy -2 — 4w =2

First, when the type is [2v * 2v1; 1y T 1, v1 — 1] we compute

w, Fy.
) g = 4l 1>(8—7~>+V1—1,

(1
(2) w =238 gy oy — 2,
(3) 4=V1(V1—4)(8—7“)+2V1—5
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