1. 完全数

mだけ平行移動した完全数とは $\sigma(a)=2a-m$ を満たす自然数a.

2. スーパー完全数

mだけ平行移動した完全数 α の A 型解 は 定義により $\alpha = 2^e q$ と書ける.

2べき部分 (2^e) と素数部分(q: メルセンヌ素数という)に分解する

これらを独立に調べる.

 $q = 2^{e+1} - 1 + m$ が素数のとき $a = 2^e$ を m だけ平行移動した 狭義のスーパー完全数という.

 $q = 2^{e+1} - 1 + m$ が素数のとき $a = 2^e$ の満たす方程式を作る.

 $2^{e+1}-1=\sigma(a)$ なので, $A=\sigma(a)+m$ は素数. したがって $\sigma(A)=A+1=2a+m$.

2つの式 $A = \sigma(a) + m$, $\sigma(A) = 2a + m$ は $q = 2^{e+1} - 1 + m$ が素数のとき $a = 2^e$ を元にして作ったのだが式の成り立ちの経緯をすっかり忘れ

a, A を未知数として $A = \sigma(a) + m$, $\sigma(A) = 2a + m$ を 連立方程式と見なす.

Definition 1. $A = \sigma(a) + m$, $\sigma(A) = 2a + m$ を満たす自然数 a と A について a を m だけ平行移動した 広義のスーパー完全数, A をそのパートナーと呼ぶ.

スーパー完全数はm=0 のとき 1969年に Suryanaryana によって導入され、その定義は $\sigma^2(a)=2a$

スーパー完全数a が偶数なら, a は完全数の2べき部分になる (偶数完全数についての Euler の定理の類似,Suryanaryana の定理)

3. m = 1 のときのスーパー完全数

TABLE 1. m=1 のときのスーパー完全数

a	素因数分解	A	A の素因数分数
m=1			
15	3 * 5	25	5^2
190	2 * 5 * 19	361	19^{2}
36856	$2^3 * 17 * 271$	73441	271^{2}

m=1 のとき表によると $a=2^e*p*q, A=q^2, (p,q: 素数)$ の形をしている.

さらに $p = 2^{e+1} + 1$, (フェルマ素数), q = p(p-1) - 1 (超フェルマ素数).

TABLE 2. 超フェルマ素数

\overline{e}	$N=2^{e+1}+1$			W = N(N-1) - 1
3	17	17	Fermat P	271
5	65	5 * 13		4159
9	1025	$5^2 * 41$		1049599
15	65537	65537	Fermat P	4295032831
22	16777217	97 * 257 * 673		281474993487871

TABLE 3. m=1 のときのスーパー完全数の構成素因子

\overline{e}	$p = 2^{e+1} + 1$	素因数分解	q = p(p-1) - 1	素因数分解
0	3	3	5	5
1	5	5	19	19
3	17	17	271	271
15	65537	65537	4295032831	4295032831

m=1 のときのスーパー完全数としてえられたこれら4個の数は珠玉のような数と言ってよいだろう.

フェルマ素数は5個しか知られていない. 超フェルマ素数はもう少し多い.

次の結果が得られる.(梶田光)(小学5年生)

Theorem 1. 平行移動 m のスーパー完全数において $a = 2^e * p * q, A = q^2, (p, q : 素数)$ を仮定すると m = 1.

4. スーパーメルセンヌ完全数

スーパー完全数 の導入の50 年後に完全数 $\alpha = 2^e q$ の素数 部分(q: メルセンヌ素数という) を取り出しスーパーメルセンヌ完全数 の概念ができた.

$$a=2^{e+1}-1+m$$
 が素数のとき $\sigma(a)=a+1$ となる.
$$\sigma(a)=a+1=2^{e+1}+m$$
 になり $A=\sigma(a)-m$ とおくとき $A=2^{e+1}$.
$$a+1=2^{e+1}+m$$
 により
$$\sigma(A)=2^{e+2}-1=2*2^{e+1}-1=2a-2m+1$$

Definition 2. $A = \sigma(a) - m$, $\sigma(A) = 2a - 2m + 1$ を満たす 自然数 a と A について

a を m だけ平行移動した スーパーメルセンヌ完全数,A をそのパートナーと呼ぶ.

Proposition 2. a が素数なら A は2べき. 逆も正しい. (た だし概完全数予想を使う $:\sigma(a)=2a-1\Rightarrow a=2^e)$

m=0 のときスーパーメルセンヌの式は $\sigma^2(a)=2a+1$. この解はメルセンヌ素数になると予想される. $(A=\sigma(a)$ が偶数を仮定してもよい.)

TABLE 4. スーパーメルセンヌ完全数 ,m = -10, -9

\overline{a}	素因数分解	A	素因数分解
m = -10			
第1ブロック	GC 型		
5	5	16	2^4
53	53	64	2^6
1013	1013	1024	2^{10}
18	$2 * 3^2$	49	7^{2}
m = -9			
51	3 * 17	81	3^{4}
537	3 * 179	729	3^6
4911	3 * 1637	6561	3^8
44277	3*14759	59049	3^{10}

m が奇数の場合は解が少ない.

m = -9 の場合には $a = 3p, p(\neq 2, 3)$: 素数, $A = 3^e$ となる解が4個出た. このことはパソコンを用いて確認されている.

Proposition 3. $4p+13=3^e$ を満たすとき $a=3p, (p \neq 2,3)$ は $A=\sigma(a)+9, \sigma(A)=2a+19$ を満たす.

TABLE 5. m = -9 のときのスーパーメルセンヌ完全数 $a = 3p, A = 3^e$

\overline{e}	3*p
4	51 = 3 * 17
6	537 = 3 * 179
8	4911 = 3 * 1637
10	44277 = 3 * 14759
12	398571 = 3 * 132857
88	727330297340642702157616456623060611670111 =
88	3 * 242443432446880900719205485541020203890037

Theorem 2. m = -9 のスーパーメルセンヌ完全数は a = 3p を仮定すると $A = 3^e$ を導くことができる. ただし底3についての概完全数仮説を使う.

これより、 $3A-1=2\sigma(A)$. 次の概完全数仮説を使う.

Remark 1. 素数 p について $(p-1)\sigma(a) = ap-1$ が成り立てば a は p のべき.

ただし, p = 2,3 には反例が知られていないが,a が 100万以下で次の反例がある.

- p = 5 のとき a = 7 * 11
- p = 7 のとき a = 97783 = 7 * 61 * 229
- p = 11 のとき a = 611 = 13 * 47
- p = 17 のとき a = 1073 = 29 * 37, a = 2033 = 19 * 107