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1 Introduction

Let C be an algebraic curve on the projective plane P2, Let P,[C] denote
logarithmic m genus of pairs (P2, C). Pi[C] turns out to be the genus g
of C'. These are invariant under Cremona transformations,i.e., birational
transformations between the projective plane P? and itself.

To compute logarithmic plurigenera I°,[C] , one has to construct non-
singular minimal pairs (S, D) which are birationally equivalent to the given
(P2,C). Let Z be D+ Kg. Then Z2, D2, g where g is the genus of the curve
D, are birational invariants as pairs. Moreover, P 1[D] = dim|2Kg+ D|+1
is called, the (2,1) genus of a nonsingular pair (S, D) Inequalities among
these invariants will be established.

The invariant bigenus [%[C] is very powerful to characterize algebraic
plane curves of certain type , that was first recognized by Coolidge [2].
Actually he showed the next two results in 1928:

1) if P5[C] = 0 then by a Cremona transformation, C' is transformed into
a line.

2) If P;[C] = 1 then by a Cremona transformation, C' is transformed
into either a nonsingular cubic or a rational curve of degree 3m with nine
m ple points and a double point.

The purpose of this paper is to extend his results. Actually, structure of
plane curves C' with P»[C] = 2,3,2Z? = 0,1,2,3 or P21[C] = 1,2,3 will be
determined.



2 minimal models of pairs

2.1 Dbirational transformations between pairs

Here, we recall basic notions and results in birational geometry of pairs (see
[5, litaka]). Let C be a curve on a non-singular projective surface S.

Two pairs (S, C) and (S1,C1) are said to be birationally equivalent ., if
there exists a birational map f : S — S such that the proper image f[C]
of C' by f coincides with C;. Here the proper image f[C] is , by definition,
the closure of the image f(x) of the generic point z of C. When there is
no danger of confusion, we say that €' is birationally equivalent to C) as
imbedded curves if two pairs (S, C') and (S1, C1) are birationally equivalent.
f is said to be a birational transformation between pairs.

The purpose of birational geometry of pairs is to study properties of
pairs (5, C') which are invariant under birational transformations.

A pair (W, D) is said to be non-singular , if both W and D are non-
singular. In this case, we have complete linear systems |m(D + Ky )| for
any m > 0, where Ky indicates a canonical divisor on W. The dimension
dim|m(D + Kw)| +1 depends on both D and W. But to simplify the
notation, we use the symbol P,,[D] to denote dim|m(D + Ky )| +1. Using
this we define the Kodaira dimension k[D] of (W,D) to be the degree of
P,,[D] as a function in m. It is easy to see that I, [D] and k[D] are birational
invariants of (W, D) in the above sense. Hereafter, we shall consider pairs
(S,D) in which S is rational. Then I’ [D] turns out to be the genus of D,
denoted by g(D).

A non-singular pair (S, D) is said to be relatively minimal , whenever
the intersection number D - E > 2 for any exceptional curve (of the first
kind) E on S such that E # D. In this case every birational morphism from
(S,D) into another non-singular pair (S, 1)) turns out to be isomorphic.
Moreover, the pair (S, D) is said to be minimal , if every birational map
from any non-singular pair (S1,D;) into (S, D) turns out to be regular.
Any relatively minimal pair (S, D) is minimal if k[D] = 2 (see Theorem I in
[6]). In this case, the self-intersection number D? is a birational invariant.
Moreover, if kK[D] > 0, D? is also a birational invariant except for the case
in which k[D] =0 and P;[D] = 1.

It is well known that given a rational surface S, after contracting all
exceptional curves on § successively, we get relatively minimal models of S.
Relatively minimal models of rational surfaces are the projective plane P2
or P! x P! or a P'— bundle over P! which has a section Ay, with negative
self intersection number. The last surface is denoted by a symbol % g where



— B denotes the self intersection number Ao? of the section An. Here, we
call X p Hirzebruch surface of degree B after Kodaira.

For simplicity, we let ¥y denote the product surface P! x P, The Picard
group of Lp(B > 0) is generated by the section A, and a fiber F, = p~!(c)
of the P'— bundle, where p : ¥ — P! is the projection.

2.2 curves on Xp

Let C be an irreducible curve on Xp. Then there exist integers o and e such
that
C ~0Ay + eF..

We have C'-F, = 0 and - A, = e— B-o. Hereafter, suppose that €' # A.
Thus C' - Ay > B and hence, e > o - B. If B > 0 then Ay? = —B < 0 and
such a section Ay, is uniquely determined. For a surface ¥y = P! x P! |
we get F. ~ P1x point and Ay, ~ point xP!. We may assume that e > o.
Thus o and e are uniquely determined for a given curve C' on X p.

Letting go be the virtual genus of C' and Ky a canonical divisor on Xp,
we get

290 —2=C*+ K- C
= (0Ax +eF,) - ((0 —2)Ax + (e — B = 2)F,)
=B(l1-o0)o+2(e0—e—o0).

Hence,
w= (e~ 1o ~1) - X2,
C? = 2e0 — o2b.
Letting f = e — Bo = (- Ay > 0, we obtain
C~olAy+ fFg,
Ky~ —2A¢ — (2 - B)F,,
Zo=C+ Ky~ (c—2)Ag+ (f —2+ B)F,,

where Ag is an irreducible curve linearly equivalent to A, + BF,.. Thus,

Bo(o—1) (0—-1)(Bo+2f—2)
2 - 2 ’

go= (=Dl -1+



C? =2fo + 0*B = o(2f + Bo),
9 20
o1

20 — 4
7Z¢ = —
g

go + 20,

go +4 — 20.

2.3 types of pairs

We assume C' to be singular. Let v1(C) denote the highest multiplicity of
the singular point of C'. We take a singular point p; on C' with mult,, (C') =
v1(C), that is denoted by v;. Blowing up at center p;, we obtain a surface
51 and a proper birational morphism pq : S — Sy = Xp, which satisfies

,U,T(C) ~ Cl + I/1E1,

where Fy = ul_l(pl) and (' is the proper transform of C' by ul_l. Letting
Ky and K; denote canonical divisors of Sy = Xp and 51, respectively, we
have

Kl ~ HT(KO) + El.

In order to simplify the notation, the total inverse images of divisors are
denoted by the same symbol. For example, the above relation is denoted by

K; ~ Ko+ Ej.

Letting 15 denote v (C1) and taking pp on C such that mult,, (C1) = vy,
we get a surface S9 and a birational morphism puo : Sy — S; which is ob-
tained by blowing up at ps. Continuing this process, we obtain a sequence of
birational morphisms p1, pg, - -+, pir such that the composition p of these mor-
phisms gives rise to a minimal resolution of the singularities of the imbedded
curve C"

W =845, 2=l . Bg Mg — 5,

Thus letting v; =mult,, (Cj_1), we get a sequence of integers vi, 19, - -, vy
such that v1 > vy, - -, 1, > 2, where Cy stands for C.

Definition 1 The type of the pair (X, C) is defined to be [oxe, B ;v1,va, -

-, vy] and the type of a curve C on P? is denoted by [d; vy, 11,9, -+, ;] where
d is the degree of C' and vy, vy, 1o, - - -, v, denote the multiplicities of singular
points of C.



Occasionally, the curve C of a pair (Xp,C) is said to be a curve of type
[0*e,B;vi,va,- -, vp]. For simplicity, [0 e, 0 ;v1, 19, -, 1] is rewritten as
[0 % e;vi,va,- - 1.

In the case where (' is itself non-singular, we put » =0 or r =1 and 14
=1 by convention.

3 Elementary transformations

3.1 I_|_(p,l/1),]:_(p,l/1)

We shall introduce special kinds of birational transformations among Hirze-
bruch surfaces, called elementary transformations. Take a point p on Xp.
Blowing up at p, we get a birational morphism u : S — Sy = Xp. Then
letting F be a fiber p~!(p(p)) of T and letting E be the exceptional curve
p1(p), we obtain

p oAy + eF,) ~ p*(C) =C"+ 1 E,

pr(Fe) ~p*(F)=F' + E.
Here F. = p !(c) ; F’ and C' denote the proper inverse images of F and C,
respectively, and v indicates the multiplicity of C at p.
If p € A, then denoting by A’ the image of A, we get (Al )? =
—B — 1. Moreover, p*(Ax) = Al + E, and

C'~o(A +E)+e(F'+E)—nkE.

Since F'? = —1, F’ becomes an exceptional curve. Contracting F' into
a non-singular point p’ , we get a non-singular surface S’ and a proper
birational morphism p': Sy — 8. By Al - F/ = A - F—-1=1-1=0,4
is isomorphic around Al_. Thus, the image A’ of AL_ by x' is isomorphic
to AL_. Hence,

(ALY =AL?=A2-1=-B-1

This implies that S’ is isomorphic to X 51 1. The image of C’ by p’ is denoted
by Cy, that satisfies
Co ~ o'All + €'F,,

for some integers o’ and €', where F, is a fiber of the P!~ bundle g ;.
The proper inverse image F' of F, by p' satisfies

W(F,) =F +E.



Let v} denote the multiplicity of Cy at p’. Then
C'~ oAl +€(F'+ E)— 1y F.
Since E, F' and Al are linearly independent, it follows that
od=0, ote—-vi=¢, e=¢ -1

Hence
bl
V{za—ul, 6’=€+I/i=6+0’—1/1.

Also in the case when p ¢ A, we get the similar result. Thus, the next
proposition is established.

Proposition 1 1. If p € Ay then o' = 0, §' = ¥py and v] = 0 —
v, =e+1].

2. fpg A theno' =0,B>0and ' =%Xp_1,f =0 -1,/ =e—1.

Note that in the case when B = 1,p € A, S’ becomes Zj and €' < o’
may happen.

The birational map p - u'~! is called elementary transformation of type
L. More precisely, if p € Ay then the birational map - p'~! is said to be the
elementary transformation 1i(p,v1). If p & Ay then the birational map

p - 't is said to be the elementary transformation 1_(p,v1).

1

NOTE: During the performance of an elementary transformation, the
singular point with multiplicity 1, disappears and a singular point with
multiplicity v4 appears if v] > 0.

Let (S, D) be a pair obtained from the pair (Xp, C) of type [o*e, B; vy, v, -
-, vy] by minimal resolution of singularities of C'. Moreover, let (Sp, Dg) be
a pair obtained by minimal resolution of singularities from the pair (S, D)
by the elementary transformation I (p,r;) where vy =mult,(C). Then if
V] # 1, we get

D02 —-D?*=0C?%- I/12 - 002 + I/i2

=0(2e—oB) -1’ —02e+0—1)—o(B+1)+4°>=0.
Moreover, if f = 1, then
D —D*=1.
Thus, D? increases.
In both cases, we write Dy? — D? = ¢(I_(p,r1)). Similarly, let (S, D) be
a pair obtained by minimal resolution of singularities from the pair (X5, C)



and let (Sp, Dg) be a pair obtained by minimal resolution of singularities
from the pair (S,D) by the elementary transformation I_(p,rv1). In this
case, if ] # 1, then

D¢>-D*=0

and moreover, if ] =1, then

Dy’ —D*=1.

When ¢ = 2v; and p; € Ay, after performing an elementary trans-
formation Iy (p,v1) to a pair of type [0 * e, B; vy, 19, - -, 1], the new type
denoted by [0 x €', B'; 1,19, -« -, 1] satisfies that ¢/ = e+ 11, B’ = B+ 1 and

B -1 B’ -1
then go = (e — 1)(o — 1) — 227=1) _ (e'—1)(a—1)—% and
C? = 2e0 + 0’B = 2¢'0 + 0 B’. Therefore, gy and C? are invariant under

elementary transformations Iy (p,v1) and 1_(p,v4).

Therefore, starting from the type [2v) x e;v1, 1, - - -, 1], we get the type
[2v1*(e+11), L vy, 19, -, vy and [2v1 % (e+214 ), 25 11, 12, -+, 1y ] provided that
e+2v; > 4. Note that if e > iv; then the type [2vy*(e+ivy), i;v1, 9, -+, 1y
is possible.

Remark 1 Moreover, if e > vy then the types [2vy % (e+ivy), 1311, Vo, -, Uy ]
for 1 < i < [e/v1] are said to be the types associated with [2v; x e, 0; v, v, - -

'7”7‘]-

For example, the types associated with [8 x 8;4°, 3] are [8 % 12, 1;4°,3%] and
[8 * 16,2;4°, 34].

After a finite succession of elementary transformations of type I and II,
we can assume 0 = 0 or 0 = 1 or 0 > 211 and moreover if B = (0, then we
assumne that o > 27 and o < e.

3.2 IIi(p, 1)

In the case when B = 1, we get A2 = —1 ; hence Ay is also an exceptional
curve. Take a point p from S — A, with multiplicity v; and blow up at p.
Then we obtain a non-singular surface /' and a proper birational morphism
U — %y, The inverse image of p is an exceptional curve E, that satisfies
Ay NE = (. Letting C’ denote the proper inverse image of C, we get

C'~0Ay +e(F' + E)—1E.



Contracting A into a non-singular point ¢, we get a non-singular surface
W and a proper birational morphism A : U — W. W is isomorphic to X,
which has a P! — fibering. The image of E is a section of the fibering, which
we denote by A. Then A? = —1. The image Cq of C’ by A is written as
follows for some ¢’ and €’ in the space of linear equivalence classes:

Co~ o' A+ ¢€F,.

Here F, denotes a general fiber of the P! — bundle of W. By the same
argument as before, we get

/ / /
o=e—v), € =e¢ V| =¢€—0,

where v{ indicates the multiplicity of Cy at ¢. The birational map ¢ :
W — X that is a composition of u and A~! is said to be an elementary
transformation 111(p,v1). Then

C? —v? =0(2¢ — o) — 112

and

Co? — 1/{2 =(e—1)2e—e+v)—(e—0)=0(2e—0)—11° =C?% - 12
Letting (.S, D) be a pair obtained by minimal resolution of singularities from
the pair (X, C) and (Sg, D) a pair obtained by minimal resolution of sin-
gularities from the pair by the elementary transformation ITII(p, ).
If ] # 1, then
Dy* —D* =0

and moreover, if ] =1, then
Dy?* = D* = 1.

Also in these cases, we write Dy% — D? = ¢(IT1(p, 11)).

Now we take a point p; where vy = mult ,, (C) =14 (C). fe—0 < vy,
then Ay, does not pass through pq, since e —0 = Ay - C < mult,, (C') = v1.
Thus we can apply an elementary transformation of type III with center
p1 and then the transformed curve Cy has the type [0’ x €/, 1;0], v, - - -, 14],
where ] = e— o0 < v and ¢/ = e —v; < 0. Note that v; may be smaller
than vs.

10



3.3 #— minimal model

Finally we consider the case when C' is itself non-singular. If B = 1 and
e —o =13 = 1, then Ay is an exceptional curve with A, - C' = 1. This
implies that (21, C') is not relatively minimal. Contracting A, into a non-
singular point of P?, we get a non-singular curve C; on P2. The contraction
gives rise to a birational morphism A : X; — P? which is the inverse of the
blowing up. The morphism A is said to be a transformation O_(Ay).

Definition 2 Assume that o > 2v1 and e > o + Bry. Moreover, if B =
1 then assume ¢ — o > 1. When the above conditions are satisfied, the
pair (Xp,C) is said to be #— minimal. Occasionally, the #— minimal
pair (Xp,C) is said to be a #— minimal model of a pair (S,D), if it is
birationally equivalent to (S, D).

For simplicity, the curve ' is said to be #— minimal, whenever the pair
(¥p,C) is #— minimal.

4 logarithmic plurigenera

Let (S, D) be a non-singular minimal pair. Then either S = P2 or (8, D) is
derived from a #— minimal pair (Xp,C) of type [0 x e, B;vi,v9,- - -, ;] by
a finite succession of blowing ups at singular points of C'.

The next relations among linear equivalence classes hold:

T T
D~C-> vE;, Ks~Ko+» Ej
j=1 j=1

T
D+ I/lKS ~C+ I/lKO =+ Z(l/l — I/j)Ej.
j=1

Then |C + 11 Ky| # 0 and so |D + v Kg| # 0.

4.1 nef divisors

We recall some basic results on non-singular minimal pairs (S, D) under the
assumption g = g(D) > 0 ([6, litaka]). For simplicity, g — 1 is denoted by g.
Whenever g > 0, Z = Kg + D is a nef divisor and Z - D = 2g, 2% > 0.
Moreover, Z2 = ( if and only if x[D] = 0,1 ([6, Proposition 3,p299]).
We shall prove the following three lemmas.

11



Lemmal 1. (D+4+u1Kg)-D>0,

2. (11 —1)D? < 2u7.
In particular, if v; > 2 then D? < 4g. Moreover, if vy > 3 then D? < 3g.

Proof: Suppose that (D + 11 Kg) - D < 0. Then since |D + 11 Kg| # 0, it
follows that |D+v1 Kg—D| # (). This implies that |11 Kg| # 0; hence, x(S) >
0. This contradicts that S is a rational surface. Hence, (D +11Kg)-D > 0.
On the other hand, (11 Z — (v1 —1)D)- D = 2v1g — (v1 — 1) D?, which induces
the result. —

Lemma 2 Suppose that v1 > v > 0. If Y is a nef divisor on S, then
(D+vKg)-Y >0.

Proof: Since |D + 11 Kg| # 0, taking F from |D + v1Kg| we obtain
(D +vKg) ~vD+v(F —D)= (v —v)D+ VF.

Hence, 11 (D +vKg) Y = ((1n —v)D)-Y +vF -Y > 0; thus we obtain the
result. 1

Lemma 3 (Theorem of adjoint of special index 2) Under the hypoth-
esis that K[D] =2 and 0 > 4, 2Z — D = D +2Kg is a nef divisor. Moreover,
(2Z-D)?>0. If(2Z - D)?=0 then2Z — D ~ 0 and o = 4.

When the type is [d;1], 2Z — D is a nef divisor if and only if d > 6.
Moreover, if (2Z — D)% = 0 then the type is [6;1].

Proof: Since o > 4, it follows that 22y — C' ~ (0 — 4)A¢ + (f + 2B — 4)F,,
which is nef. Moreover, (2Zy — C)? = (0 — 4)(Bo + 2f —8) > 0. Thus
(2Zy — ©)? = 0 if and only if 0 = 4. Therefore, if vy = 1, namely if C is
nonsingular, the result follows.
Suppose that v; > 2. Even in the case where g = 0, |D + 2Kg| # 0.
Assume that there were an irreducible curve A such that (2Z—-D)-A < 0.

P
Then D # A. Indeed, by Lemma 1, D? < —22 3
vy —

19 < 4g. In particular,
(D+2Kg)-D=(2Z-D)-D=4g—D*>0.
Taking F from |D + v Kg|, we get

1/1(22 — D) ~unD+211Kg ~2F + (1/1 — 2)D

12



Then A- (2F 4+ (11 —2)D) < 0and so 2A4-F < —A(v; —2)- D <0, which
would imply that A-F < 0 and so A? < 0. Moreover,

0>(2Z-D)-A=D-A+2Ks-A>2Ks- A

Therefore, A2 = A-Kg=—1landso0 > D-A—2; thus D-A < 2. But
since (S, D) is minimal, it follows that A - D > 2; a contradiction.

Recalling that v1 > 2 and that 2Z — D is nef, by Lemma 2 we get
(2Z — D)% > 0.

Assume that (2Z — D)? = 0. We shall examine the equality in the
following cases, separately.

case (1) 11 > 3.

Since 2Z — D is nef and v > 3, it follows that (3Z —2D)-(2Z - D) > 0.
But

0<(3Z —2D) - (2Z — D)
=2(2Z — D)-(2Z — D)+ —Z - (2Z — D)
=—7-(2Z-D) <0,

Hence, (3Z —-2D)-(2Z—-D) = Z-(2Z — D) = 0. Therefore, D-(2Z — D) = 0;
hence it follows that D? = 47 and Z% = 3.

Agsume that g > 1. Then Z is nef and big. Hence, D+2Kg =2Z-D ~ 0
by Hodge’s index Theorem.

Moreover,

1/12 — (I/1 — 1)D ~ 1/12 — 2(1/1 — 1)Z = (2 — I/l)Z.

But |11 Z — (11 —1)D| # 0 and k(S, Z) > 0. Hence, Z ~ 0, which contradicts
k(S,Z) = k[D] = 2.

Assume that ¢ = 0. Then D? = 45 = —4, which contradicts the fact
D? < —5.

case (2) 1) < 2.
Since 22 — D ~ D 4+ 2Kg ~ C + 2K, it follows that

(2Z — D)* = (C +2Ko)? = (0 —4) (0B +2f — 8) > 0.

But 0 > 4 and ) = 0. Hence, we obtain ¢ = 4. 1
In what follows, @ stands for (22 — D)2,

13



4.2 formula for plurigenera
Proposition 2 Suppose that (S, D) is minimal with ¢ = g(D) > 2 and
k[D] = 2. Then letting Z = Kg + D, for any m > 0, if g > 1 then
m(m — 1)
2
PyD)=2%4+29—1=2%4+2g+1.
Moreover, if g =1 then

PnlD] = Z% + mg + 1,

~1
PulD] = %22 +2,
Py[D] = Z?% 4 2.

Proof: Since Z is nef and big, by a vanishing theorem due to Kawamata,
H'Y(S,05(Ks +mZ)) =0 for any m > 0. Hence, by Riemann-Roch,

mZ-(K5+mZ)+1_m(m+1)

dim H°(S,05(Ks+mZ)) = 5 5

Z? —gm+1.

From the exact sequence of sheaves

0— Os(Ks+mZ) = Os((m+1)Z) = Op((m +1)Kp) — 0
we obtain
Pmy1[D] = dim H(S, 05(Ks +mZ)) + dim H*(D,Op((m + 1)Kp))
If m > 2 and g > 1 then H'(D,Op((m + 1)Kp) = 0;hence,
m(m + 1)

P1[D] = TZ2 +g(m+1) + 1.

If m > 2 and g = 1 then H'(D, Op((m + 1)Kp) = C;hence,

m(m + 1)

Pm+1[D]: ZQ+27

Py[D] = Z? 4 2.
Here,
Z? = (Ks + D)? =45 + K% — D*.

Later, it will be shown that if g = 0 then P»[D] = Z2 + 2.
Note that Po[D] may be called bigenus.

We shall show some relations among Z2, Z - D, D? involving the multi-
plicities of singularities.
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4.3 Formula I

Let (S, D) be a non-singular minimal pair which is birationally equivalent
to a # minimal pair (Xp,C) of type [0 * e, B; vy, v, - -, 1y]. Let Zy denote
C + Ky and let ¢; denote the number of j— ple singular points of the curve
C. For simplicity, by B we denote Bo + 2f.

Definition 3 Define 1, to be (o0 —m)(B — 2m).

For example, 71 = (0 — 1)(B — 2) = 2go.

Lemma 4 For any integers v, u,
(vZo — (v = 1)C) - (nZo — (p = 1)C) = Ty — 2(v — p)*

In particular, (vZy— (v —1)C)-Zy = 131 —2(v —1)? and (vZo — (v —1)C)-
(22 — ¢) = Tyy2 — 2(v — 2)%.

Proof: By definition,

vZy— (v —=1)C) - (nZo — (p — 1)C)

o —20)A¢+ (f +vB = 2v)F;)((0 = 2p) Ao + (f + pB — 2p1) F)

o—2v)(o—2u)B+ (0 —2v)(f + puB —2u) + (0 —2p)(f + vB - 2v)

o—v—p)Bo+(o—2v=2u)(f —2p) + (0 —2v=2u)(f — 2v)
(5= )] = 2) = (= )] = 200) — 20— v)?

=(0 —v—p)(Bo+2f —2v—2u) — 2(u — v)?

=Ty — 2(v — ).

—~

1
From (vZy— (v —1)C) - 22y - C) -2(wZy— (v —1)C) - Zy = —(vZy —

]. C C d s P d

Lemma 5 (Formula I)
1. Letting 5(v) be 2 oie(j — 1) (v = 4)tj, we obtain

wZ—-wv-1)D)-Z=wzy— (v-1)C)- Zy+ (v),

(I/ZU - (I/ - 1)0) : ZO = Ty+1 — 2(1/ - 1)2.

15



2. Letting do(v) be S5, j(v — j)t;, we obtain
(WZ - (v—1)D)-D = (vZy — (v — 1)C) - C + do(v),
(vZo— (v —1)C)-C =T, — 2°
3. Letting 01(v) be Y41, (v — §)%t;, we obtain
(wZ — (v—1)D)* = (vZy — (v — 1)C)* = &1 (v),
(vZo — (v = 1)C)* = 7.

By Lemma 4, the next result is obtained.

Corollary 1

v(Tus1 — 2(p — 1)%) = (v - (7 — 2u%) = Togn — 2(v = w)?,

and
VT — (v — D)7y = Tygp — 207 + 20,

Remark 2 When vy < 2,

When v < 3,

3(3) =t2, 00(3) =2ts, 81(3) = ta.
Corollary 2 When vy < 2,

(0 —3)(Bo +2f —6) =4 —2g +22°.

Proof: Applying Remark in the case when vy < 2 and v = 2, we obtain
27% —294+2=(2Z-D) - Z =132,
where 73 = (0 — 3)(Bo + 2f — 6). I

Claim1 Let X =oc—m and Y = B —2m. If o > m, then X <Y except
for B=1 and m > 2f.

In the exceptional case, B =1 and m > 2f > 4. Hence, m > 5.

16



4.4 mixed plurigenera

If m > a then every dim |mKg + aD| + 1 is also a birational invariant as
pairs, which is denoted by P, ,[D]. They are called mixed plurigenera.

If g > 0 then Z = Kg+ D is nef and big. Hence, H!(S,Os(Ks+2)) =0
by a vanishing theorem ;thus

Ks+2) Z

Py (D) = dim 1(5, 05(ks + 2) = TSV g _ g2 gy

By Lemma 3,if g > 0,k[D]=2and 0o > 5ord > 7,22 — D =D+ 2Kg is
a nef and big divisor. Hence, H*(S, Og(D + 3Kg)) = H'(S,05(Ks +2Z —
D)) = 0 ;thus

37 —2D) - (2Z — D)

P31][D] = dim H°(S, 05(3Ks + D)) _{

1
5 +
=34 —-—a+1
24+ D? — 43
:Q+ + g_l_1

2
=37 +8 —Tg + D%

Here A = Z22°0) ynd o = D - (2Z — D) = 4g — D2,
Therefore we obtain the next proposition:

Proposition 3 Suppose that k[D] =2 and 0 > 5 ord > 7. Then
P31[D)=3Z%+1-Tg+ D? > 0.

Theorem 1 (Existence of adjoint of special index 3) Assume thato >
6. Then either |D + 3Kg| # 0 or the type is [6 * 8,1;2"] .

Proof: Suppose that P51[D] = 0. Then 3Z%2 +1—7g+ D? =0, i.e., (32 —
2D)-(2Z—-D)+2 = 0. Then v; # 3 and we shall show that vy < 2. Actually,
otherwise 1 > 4 and so |D + 11 Kg| # 0. Letting Y be D + 2Kg, which is
nef and big for ¢ > 5.

Taking F' from |D + v Kg| we have

I/1(3Z — 2D) ~ 3(F — D) + 1D = (1/1 — 3)D + 3F.
By computing intersection numbers with ¥ we obtain

n(3Z-2D)-Y = —3)D-Y +3F-Y > 0.

17



But (3Z —2D) .Y = —2. This is a contradiction. Therefore, v; < 2 has
been established and so §(2) = do(2) = 0.
Letting B be Bo + 2f, we obtain by a corollary to Lemma 4

(3Z — 2D) - (2Z — D) =3Z - (2Z — D) — 2D - (2Z — D)
=3(13 — 2) — 2(192 — 8)
=T5 -2

=(0 —5)- (B —10) - 2.

Hence, (o —5) - (B — 10) = 0, which implies B — 10 = 0, i.e., Bo + 2f = 10.
Therefore, c =6,B =1, f = 2. —

In particular , (D+3Kg)-D > 0if o > 6 except for the case of [6+8,1;2"]
where 7 = 0,1,2. Indeed, in the case of [6 * 8,1;2"] , one has 2w = (D +
3Ks) D =2(r —3).

Theorem 2 Suppose that o > 6 and g > 0, k[D] = 2 where the type is not
[6%8,1;2"] , r=0,1,2. If (D + 3Kg)-D =0 then either D +3Kg ~ 0 or
the type is [6 % 8,1;23].

Proof: First, under the assumption that the type is not [6 * 8,1;2"] , we
shall show that 3Z — 2D = D + 3Ky is nef. Actually, otherwise there exists
an irreducible curve A such that (D + 3Kg) - A < 0. From hypothesis
(D+3Kg)-D =0, we derive A # D ; hence, D - A > 0.

Since |D + 3Ks| # 0, it follows that A? < 0 and so (D + 3Ks) - A =
D-A+3Kg-A < 0. Therefore, A turns out to be an exceptional curve.
But since (S, D) is minimal, we obtain D - A = 2. Therefore, contracting
A into a non-singular point pg on a nonsingular surface W, we obtain a
proper birational morphism g : S — W. Let Dy be p(D), which has a
double point at pg. Then D ~ Dy — 24 and Kg ~ Ky + A. Putting
Y=D+3Kg,Yy=Dy+ 3Ky, weobtainY - D =0,Y ~ Yy + A; hence

Y D= y+A) (Dy—24) =Yy Dy +2.

Since |Y| = |Yo| + A, it follows that |Yy| # 0. Hence, Yy - Dg > 0. Actually,
otherwise, Yy - Do < 0 implies that Dy is a fixed component of |Yy| and thus
0 # |Yo| — Do = |3Kw/|, a contradiction. Therefore, Yy - Dy > 0. However,
by hypothesis, Y - I = 0 and by definition -2 =Y - D —-2=Yy-Dg > 0; a
contradiction.

Therefore, 3Z — 2D is nef and so (3Z — 2D)? > 0.

18



If (3Z —2D)? > 0 then (3Z — 2D) - D = 0 implies that D ~ 0 or D? < (
by Hodge’s index theorem . But 0 < 6§ = 3Z - D = 2D?; a contradiction.
Hence, (3Z — 2D)? = 0 has been established.

But 0 = (3Z-2D)? =3(3Z-2D)-Z-2(3Z-2D)-D = 3(3Z—-2D) - Z.
Hence, (3Z —2D)- Z = 0. Recalling that Z is nef and big, we conclude that
32 —2D =D+ 3Kg ~ 0. -

From the proof of Proposition 2, we derive the following formula:

Proposition 4 Suppose that (S, D) is minimal with g > 0 and k[D] = 2.

Then
m(m — 1)

2
Pp[D]=2°-g+1=2"—g+2.

Pm,m—l[D]: Zz_g(m_l)-l'l

7

Since P 1[D] > 0, it follows that Z?% > g—1and hence, P,[D] = Z?+2g+1 =
7% +29—-1> 37
3
Moreover, if g > 0,5[D] =2 and 0 > 4 then W = 3 % (2Z — D) is a nef
and big divisor with fractional part. Since [W] =3Z — D = 3Kg + 2D, we
derive H'(S,Os(Ks + 3Kgs + 2D)) = 0 ;thus

Py 5[D] =dim H°(S, Os(4Ks + 2D))
(4Ks +2D) - (3Ks + 2D)

= 1
5 +

=(2Z-D)-(3Z-D) +1
=622 — 105 + 1+ D?.

4.5 estimates for bigenera

Suppose that ¢ > 4. By Lemma 3, we get
0<(D+2Kg)- Z=(2Z—-D) Z2=2Z>-D-Z=22Z*-g+1),

ngl[D]=Z2+2—g.
Thus, if g > 1,

Z?>g and DPa[D]=2Z%+2g9—1=>3g 2.
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Further, if g > 1,then
Py[D]=Z*+2g— 1= Py1[D] + 39 — 3.
If g =1 then
Py[D]=Z*+2= Py [D] + 1.

e Suppose that S =X g and 0 = 3.
Then g >4, D> =3g+6and Z? =8 —D?> +49g—4=g— 2.

e Suppose that 11 = 1 and S = P2, If the type is [d; 1] where d > 4, then
Z =D+ Kg~ (d—3)H, H being a line.

d—1)(d - 2)

Since Z% = (d — 3)? and gg = ( , it follows that

Z? —(go—2) =
Consequently, we obtain the following result.

Theorem 3 Suppose that (S,D) is a relatively minimal pair with g =
g(D) > 1. Letting Z be Kg + D, we obtain

1. If g > 1 then P,[D] = Z? + 29 — 1 > 2g — 1.

2. Ifg>1and Po[D] =29 —1 or g =1 and P,[D] =2, then Z? =0 and
k[D] =0 or 1.

8. If k[D] = 2,9 > 1, then Z* > g — 2 and P»[D] > 3g — 3.
4. If k|D] = 2,9 =1, then Z?> > 1 and P3[D] = Z? +2 > 3.

5. If ,[D) =3g—3 and g > 2, then Z? = g—2 and one of the following
cases occurs.

(a) S=2%p and o =3 or
(b) S=P% andd=4 or5.
In both cases, P> 1[D] = 0.

6. Pyi[D] = A+ 1, where A= Z? —7.

7. If g > 1 then PQ[D] = PQl[D] + 3g
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In that follows, we shall determine types of #minimal pairs of minimal
pairs (S, D) with P»[D] = 2g,2g+1;3g — 2,39 — 1, 3g, in other words, (S, D)
with 2?2 =1,2;9g—1,9,9 + 1.

First, we consider the case in which the type is [d; 1] where P>[D] is small.
Proposition 5 Assume that the type is [d; 1].
1. If Z? =1 then d = 4 and P»[D] = 6.
2. Assume that Z*> = g — 2 + j where j = 0,1,2, 3.
If j=0thend=4,5. If j =2 thend=3,6. If j =3 then d =4,7.

Proof: If the type is [d; 1], then Z% = (d — 3)?. Assume that Z? = 1 or 2.
Then d = 4 and Z? = 1.

Assume that Z? = g — 2+ 5,7 > 0. Then since 29 — 2 = (d — 1)(d — 2),
it follows that (d —3)(d — 6) = j — 2. Hence, the result follows immediately.

(I

5 relations between A and «

Two more invariants A, a are introduced:

A=(2Z-D)-Z/2=2*-G,a=(2Z—-D)-D =4g— D*
Since 2Z — D is nef for 0 > 4 and s[D] = 2, both A and « are non-negative.

Proposition 6 Suppose that a minimal pair (S, D) with k[ D] = 2 is derived
from a # minimal pair (X, C) of type [0 xe, B;v1,--- ,vp] or (S, D) is just
(P2,D) of type [d;1] where d > 4. we shall show that the next relations
between A and o hold.

1. When o =3 or d =4,5,it follows that A = —1 and o > —10.
2. When o =4 or d = 6,it follows that 4A = «.

3. When o = 5 or d = 7,8 or the type is [6 x 8,1;2"],it follows that
3A=a-1.

4. When o > 6 where the type is not [6x8,1;2"], ord > 9, it follows that
3A > a > A
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Graph of (a &), o>b

o O o O i
o =] E G
o o =] [

Figure 1: relations between « and A
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Proof: First,we consider the case where (S,D) is a pair of the projec-
tive plane and a nonsingular curve D of which type is [d;1]. Then A =

- 3)2(—d —9 and o = d(d - 6). Heuce, 44— a = (d = 6,34 — a =
—(d — 6)2(d —9) . From these, the assertion 1) follows.

Graph of (o &), o>2

Figure 2: relations between « and A

Note that 44 — o = Q = (2Z — D)?. Hence, by Lemma , 44 — a = 0 if
and only if o = 4.

If the type is [6 % 8,1;2"], then g =19 —r, A = 5, a = 16.

Assume that 0 > 6 and the type is not [6 x 8,1;2"]. Then 34 — a =
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(22 -D)-(3Z-2D) _

2
We shall verify that A < « under the assumption ¢ > 4.
Since Kg = Z—D, it follows that (Z —D)? = K% and 22+ D? —4g = K2.
Moreover,

A-—a=2Z°4+D?-55=K:—73.

Case A): K% < —1.
Then
A-a=K;-g<-g<O0.

Case B): K2 > 0.
By Riemann-Roch , | — Kg| # (). Hence, (2Z — D) - (D — Z) > 0, which
implies that 222 + D? — 6g < 0. Therefore,

A—a=7°4+D?-53<g—-Z°=-A<0.

1
Suppose that ¢ > 4 and A — a = 0.

In case A): we get ¢ = 0, K2 = —1.There are many types in this case.
But in case B), we get ¢ > 0, A = a = 0. Hence, the type is [4 % 4;2"]* or
[6;1].

6 relations between (2 and w

Note that §2 > w when o > 6 except for the type [6 %8, 1;2"]. Indeed, except
for the type [6 % 8,1;2"], since |3Z — 2D| # () and 2Z — D is nef, we see that
(3Z — 2D) - (2Z — D) > 0 and (3Z — 2D) - (2Z — D) = 2(3Z — 2D) - Z —
(32 —2D) - D = 22 — 2w.

6.1 Caser; <3

Under the assumption that vy < 3 and ¢ > 6, we shall show that £ < 3w
provided that the type is not [6 x 8, 1; 2"].
By definition,

(0 —1)(B —2) — 50

—Q0=
3w 5

+ 2y = go — 25 + 2t

It is easy to check that (o0 — 1)(B — 2) > 50, whenever the type is not
[6 % 8,1;2"]. Hence,
3w > €.
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Figure 3: relations between w and €2
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Note that if 3w = Q then the type is [6 x 6;3%,2%2]. Hence, w = = 0.
Except for these cases, 3w — Q2 > 2.
Thus defining T to be 3w — 2, we shall show that T > 2.

6.2 Caserv, >4
From K2 = (Z — D)? = Z? — 4+ D? = K} < —1, it follows that
Q+7—3w=3K%< 3.

Hence, T = 3w — Q2 =7 — 3K 2.
We distinguish the following two cases:

Case A):K% < —1.
T=g—-3K%>2.

Case B):K% > 0.

Then since K% =1 — 8, it follows that 7 < 8,g > 0 and | — Kg| # 0.

From gy = (0 —1)(B —2)/2 > (211 —1)?, and —v;(v; — 1) > =11 (11 — 1),
we get

r

YT=79-3Ks=g0—» vj(y;—1)/2-3(8—r)
j=1

>4vi (1 — 1) — (v —1)/2 - 3(8 — )
>8 —r)v(v1 —1)/2
>3(8 —1)

Thus if r < 8 then T > 3.

Suppose that r = 8, namely Kg = 0. Then we shall show T =g > 2.

(1) If T =g = 0then 0 = K2 = D*4+Z?. By Riemann-Roch, |- Kg| # 0.
Hence, |D — Z| # (). Since 2Z — D is nef,

(D—2)-(2Z — D) = —2Z*> - D* > 0.
By D? + Z? = 0, weget — Z* > 0, a contradiction.

(2) If g =1 then 0 = K% = D? + Z? — 4. Since 2Z — D is nef,

(D-2)-(2Z -D)=6-22>—-D*>0.
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By D?+ Z? =4, we get 2 — Z? > 0. If 2 = Z? then (2Z — D) - Ks = 0. By
Hodge’s index theorem, we obtain K g < 0, a contradiction.
Consequently, Z2 = 1. By |D + 11 Kg| # ), we get

Since

(D-I—Ule)'Z:(Vlz—(Ul—l)D)'ZZO.

(nZ - —1)D)-Z=uZ* -2 - 1)g=(2—-11) >0

it follows that 1 =2 and so 2 =g = g9 — r = go — 8. Hence , go = 10. But

(0 —3)(B—6)=4—-2g+22%*=2.

Hence, 0 = 4,B = 8. Thus gg = (0 — 1)(B — 2)/2 = 9.
This contradicts gg = 10.
Combining the above argument, we establish the following result.

Proposition 7 For minimal pairs (S, D) with k[D] = 2 which are derived

from

# minimal models of type [0 * e, B;vy,--- 1] or which is (P2, D) of

type [d; 1], the next relations between §2 and w hold.

1.
2.

7

When o = 3 ,it follows that & = —g — 4 and w = —9.

When the type is [d;1] or ,it follows that Q@ = (d — 3)(d — 9) and

_dd=9) , _ (d+6)(d-9)
M_T’ w — =5

When the type is [6%8,1;27], then @ =r—4,w = r—3,4w— = 3r—8.

When o > 6 where the type is not [6 x 8,1;2"] or d > 9, it follows
that T = 3w — Q > 0. Furthermore, if T =0 then D 4+ 3Kg ~ 0 and
w=0=0.

Under the above condition, if D + 3Kg + 0, then T > 2.

curves with Z2 =1

Second, we shall study pairs (S, D) such that Z2 = 1 where (S, D) is derived

from

a # minimal pair (X, C'). Then Z% = 1. Since P51 = Z?+2—g=3—¢g

, we see that 1 < g < 3.

If

g > 1then P, = Z?4+2g—1=2g+1andIf g = 1 then P, = Z2+2 = 3.
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7.1 case g=2,3

e If g =3, then »[D] =29 =6 = 3g — 3 and by Theorem 3, 0 = 3 or
d=4. f o =g =3, then f = B =1; thus e =4,e — 0 = 1. Applying the
transformation O_(Ay) , the type becomes [4;1], too. Hence, we conclude
that the type of the transformed curve is [4;1].

o If g =2, then v; > 2 and so
0< (D+unKs)-Z=112Z> -2 —1)g=2 1.
Hence, v1 = 2; thus v1 = 2. Therefore,
Ks*=8—-r, go=g+r, D?>=0C*—4r

To determine the type, we use the invariant 7, introduced in the former
section.
Applying Corollary 2 to the case in which Z2 = 1, we obtain

(o0 —3)(B —6) =6—2g.
When g = 2, from (o — 3)(B — 6) = 2 it follows that:
o-3=1, B-6=2

Thus 0 = 4 and then g9 = 9,7 = 7, Ks? = 1,D? = 4. According to the
value of B =0,1,2, f becomes 4, 2, 0, respectively. Then the type becomes
[4 % 4;27] or its associates.

7.2 caseg=1

If g=1, then Z-D = 0. Since Z2 =1, we get Z - (Z — Kg) = 0, and so
Z-Kg = Z% = 1. Further, Z? = K¢*> — D? = 1 implies Ks> =1+ D?. In
this case, I[D] = 3.

Claim 2
D?* < -2.
Actually, suppose that D? > —1. Then Kg? = 1+ D? > 0. By Riemann-

Roch, dim| — Ks| > Ks? > 0. Hence, Z - —Kg > 0 ;thus Z - Kg < 0. But
by hypothesis, 1 = Z - Kg; a contradiction.
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7.3 Formula II

For a # minimal pair (X5, C), letting ¢; denote the number of j— ple singular
points of the curve C', define

pu, to be (D +2Ks) - (D +v1Kg) and {,, to be Y 515" (11 — 5)(j — 2)t;.
Then

Py = (C + QKO) . (C + VlKO) + Cyl.
Since
Puvi = (D+2KS) . D+I/1(D +2KS) . KS

it follows that (D + 2Kg) - D = (2Z — D) - D = 4g — D?, which we denote
by « and that (D +2Kg)-Kg/2=D-(Z—-D)/2+ K2=9—D?/2+8—r,
which we denote by &y and hence, p,, = 211§y + a.

Replacing Bo 4+ 2f by B and o — 2v; by p where p > 0 ,respectively, we
obtain

(C +2Ko) - (C + 11 Kp) = (C + 2Ko) - (C + %KU)

= (C +2Ko) - (C + %Ko) - %’(c +2Ko) - Ko).

Since
C+2Kg~ (0 —4)A¢+ (f +2B —4)F,,

o B
C+§K0 ~ (5 —O')FC

it follows that
(C + 2Ko) - (C + %Ko) = (o — 4)(

which is denoted by —7, and that

(C +2K) - Ko = 16 — 20 — B.

Thus letting ¢ be o + % — 8, we obtain (C + 2Ky) - (C'+ 11 Kp) = —n+p
and therefore,

Cn = (D +2Ks) - (D+11Ks) — (C+ 2Ky) - (C + 1 Ky)

=n+2vé+a—aop=n+oé +a—(§+0)p.

Letting

- B
§2=§0+0=0+f—8+70+§0,

we get
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Proposition 8
<1/1 =7)+0§0+a—§2p-

Corollary 3 Assume that o > 4.

1. If B#1 thenn=(0—4)(a—f—%)<0.

(c—4)p
s

D2
Moreover, n — &p < (7+T—g— 1—f—o)p.

2. If B=1 thenn <

Proof of 2): Since f > vy = 02;]0 , it follows that o — f — — =

(0 —4)p

H <
ence, 1 < 5

7.4 sharper estimate

Letting n =n — op, we get

1=(0 -9 -3)
=2 - (0~ 5) +plo — )
— 901 — 2)(201 — g) +plo - g) + 2p(vi — 2)

and
. . B _
n=mn—aop=2(v1 —2)(2v — §)+p(4+21/1 — B)

= —2(v1 — 2)1 + Ap,

where 71 = (B —2)vy + f and A = 2f — 4 — 2 + B(o + v — 2). Then we
obtain } )
1=—2(r1 —2)y1 — Ap < —Ap.

Now assume that p > 1 and 14 > 3. Then since A= B(ryv+o-2)—4-—
2v1 4+ 2f, it follows that
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1.if B=0then A= —4—2u0 +2f > -4 -2 +20 = -4+ 20, +2p >
211 — 2.

2. IfB=1then A>—4—20; +2f +2+3v1+p> 301 —5 > 2y — 3.
3. fB>2then A>6— 4y, = -4+ 201 — 2421y > 4y — 6 > 21 — 2.

Furthermore, since p > 1 , it follows that when B =0, y1 = =211 + f >
—2v1+0=p > 1 and hence, n < —2(r; —2) — Ap < 6 — 4u.
Hence, we get the following estimate:

Lemma 6 Ifp>1 and v1 > 3 ,then
Cn =1+ 21+«

and
7 < (6 — 4y + (v1 — 1)61,B)p,

< (2+ 41,8 —211)p.

7.5 case D?= -2, -3,—4

Using the formula above, we shall determine the type of pairs (S, D) in the
case when D? = —2, —3, —4, examining the following cases, separately.

e case 1 < 2. Since (2Z—-D)-Z = 22?~D-Z =2Z? and (2Z—-D)-Z = 132,
it follows that
73 = (0 — 3)(Bo +2f —6) =2Z* + 2.

Since Z? = 1it follows that 222 +2=4and 0 —3 =2 or 1.

1. If 0 =5, then 2f 4+ 58 — 6 = 2, which is impossible.

2. If 0 = 4, then 2f + 4B — 6 = 4; hence, B = 2f + 4B = 10 and
thus go = (0 — 1)(B — 2)/2 = 12. This implies that r = 11,D? =

2-4-5—4-11 = —4 and the type is [4 * 5; 2!!] or its associates where
D? =40 — 44 = —4.

e case 1 = 3. Then |D +3Kg| # 0 and so (D +3Kg)- (D +2Kg) > 0. But
0<(D+3Ks) (D+2Ks)=(3Z —2D)-(2Z — D) = 6 + 2D

Hence, D? > —3.

32



When D? = -3, we get (D + 3Kg) - (D +2Kg)=0.
Since v = 3, it follows that

(D +3Ks) - (D +2Ks) = (C + 3Ko) - (C + 2K) = 75 — 2.

From (o —5)(B — 10) = 75 = 2, we obtain 0 —5 =1 and B —10 = 2. Hence,
0 =6 and Bo + 2f = B = 12. Therefore, the type is [6 * 6; 33, 2'2] or their
associates. Thus, the virtual genus go = 25 and by genus formula

to +1t3 =10, 19+ 3t3 =g0— g = 24.

Hence, t; = 3,3 = 7 and the the type is [6 * 6;37,23] or its associates.
The case when D? = —2 will be treated in the next section.

ecase vy > 4or D? = -2 .

Proposition 9 Ifv; >4,Z? =1andg=1, then Z-Kg =1,D? = -2,r =
9 and Kg* = —1.

Proof: By hypothesis, Z-Kg=2Z?—-Z-D =1—-2g = 1. From
0<(2Z-D)-(1nZ — (v1 — 1)D) = 2u; + (1) — 1)D?,

21/1

it follows that D? > —>—7 > — Hence, D? > —2. By the Claim,
vy —

D? = —2is derived. Hence, from D-(D+ Kg) = D?+ D-Kg = 0, it follows
that D - Kg = 2. Moreover, Z-Kg =1 implies 1 = Z - Kg = D-K5+K§ =
2 + KZ; hence, Kg? = —1 and r = 9. —

w] oo

In that follows , we assume vy > 3 and D? = —2,r = 9. Hence, & =
0, = 2. Assume that p > 1. Then by a sharper estimate,

Ogclll:2+77§2+5—3I/1:7—31/1§—2.

This is a contradiction. Therefore, p=0and 0 > (,, =n+2 > 2.

Since n = —2(v; — 2)y;1 where 71 = —2v) + f + 11 B, we have the next
two cases : case (1) n = —2 and case (2) n =0 by o = 2u;.

In case (1), it follows that 2v; —4 = 2 and y; = 1. Then 0 = 6,11 = 3.
Thus f =7 — 3B, gp = 30. By genus formula,

to+t5=9, to+3t;3=30—1=29.

Thus 2t3 = 20; hence, t; < 0; a contradiction.

33



In case (2), 71 = 0 and then (,, = 2. Thus,

vi—1

2=C, =Y (1 =) - 2ty
j=3
Hence,
2= (v = 3)(t3 +ty,—1) +2(v1 —4)(tg +ty,—2) +---.

Accordingly, we have the following two cases:

1.y —3=1,t3 =2,

2. 11 —3=2,t3+1t4=1.

In case (1), vy = 4,0 = 8,90 = 49, t3 = 2; hence,

to+ts+ts =9ty + 3t3 + 6ty = 49 — 1.

Thus, to = 0,13 = 2,t, = 7, f = 8 — 4BB and the type is [8 * 8;47,3?] or its
associates.
In case (2), 1 = 5,0 = 10, g9 = 81,13 + t4 = 1; hence,

to+t3+ty+1t5 = 9,12 + 3t3 + 6t4 + 105 = 81 — 1.

Thus, 3t5 + t4 = 23; a contradiction.
Combining these results, we establish the next result:

Theorem 4 Suppose that Po[D] = 2g > 2.
1. If g = 3, then D* = 16 and the type of the curve is [4;1].
2. If g =2, then D? = 4 and the type is [4 x 4;27] or its associates.
3. If g =1, then

(a) if D?* = —2, then the type is [8 * 8;47, 3%] or its associates.
(b) If D* = —3, then the type is [6  6;37,23] or its associates.
(c) If D?> = —4, then the type is [4 x 5; 2] or its associates.

The pair defined by the curve y'¥ = 2?(1 — z)? is birationally equivalent
to a # minimal pair with type [4 * 4;27] where g = 2.
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8 curves with Z2 =2

We shall study pairs (S, D) in the case when Z? = 2, i.e., Po1[D] = Z? +
2 — g =4 — g. Thus it follows that 4 > g.

8.1 case g=2,3,4

If g > 1then P[D] =22 +29—1=1+2g.

o If g =4, then P[D] =9 =3-4— 3 and so by Theorem 3, 0 = 3 and
the type is [3 % 3;1] or [3 % 6,2;1].

In the other cases, g < 3 and o > 4. Moreover, 2 = Z? < Zg. Actually,
Z2 = (0 —2)(0B +2f — 4) > 4. Hence, v > 2.

e If g =3, then 7 = I%[D] = 3-3 — 2 and so by Theorem 7, the type is
[4 % 4; 2] or its associates.

e Ifg=2,then Z-D=29—2=2and2=2°=2-D+7%-Ks=2+27-Kg.
Hence, Z - Kg = 0 and K¢? = D? —2,Q = (2Z — D)? = D?.

Claim 3 K¢? < 0.

Proof: Otherwise, K¢?>0andso D? = K¢? +2 > 2. By Riemann-Roch,
dim| — Kg| = K5* > 0. Hence, (2Z — D) - (—Ks) > 0. From this, it follows
that

0>((2Z—-D)-Kg=(2Z—-D)-(Z—D)=2Z?>-3Z-D+D?=4—6+ D>

Hence, 2 > D?. Therefore, 2 = D?. This implies that (2Z — D) - Kg = 0.
Noting that Q@ = (2Z — D)? = D? = 2,by Hodge’s index theorem, we get
Kg ~ 0 or K¢ < 0. But both cases cannot occur, because Kg »# 0 and
K?q > 0 by hypothesis. —

Since vq > 2, it follows that
0< (1nZ— (v —1)D) - (2Z — D) =4 —2uv, + (1, — 1)D.

Hence,
2v1 — 4 2
D?* > =2- .
— -1 v —1

Suppose that v; > 4. Then D?> > 2 and so Kg? = D? — 2 > 0. This
is impossible due to the previous claim. Therefore, v; = 2,3 and D? =
K%2+2<1.
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2
If 1 = 3, then D? > 2 — 1:1. By Claim , D? = K% + 2 < 1;thus
vy —

D? = 1. In this case, K¢?> = —land r = 9. Furthermore, A = Z? — g =
1,a = 4g — D? = 3. Hence, (3Z — 2D)(2Z — D) = 6A — 2a = 0. But by
v <3,3Z—-2D)2Z —-D) =(3Zy—2C)(24y —C)=1715—2. Thus 75 = 2
and s0 0 = 6,B = 6B + 2f = 20 = 12, go = 25. By genus formula,

tot+itz=r=9; to+3t3=g0—9g=23.

Immediately, we get to = 2,3t3 = 7. Hence, the type is [6 * 6;37,22] or its
associates. !

If vy = 2, then
2=4-2=(2Z-D) - Z=13—2,

hence,

(0 —3)(B—6) =13 =4.
Then o = 4, B = 10. Therefore, the type is [4 * 5; 219] or its associates.

8.2 caseg=1
If g =1, then »[D] = Z?4+2=4and Z-D = 2g—2 = 0 and Ks% = 2+ D?.
Thus

0< (nZ— (v —1)D)-(2Z — D) = 4vy + (v, — 1)D%

Hence,

Claim 4
Actually, if D? > —2 then Kg? = 2 4+ D? > 0. Hence, by Riemann-Roch,
| — Kgs| # (. Since o > 4, it follows that

0>(2Z-D) Kg=(2Z-D)-(Z-D)=2Z?+D*=4+ D>

Hence, —4 > D?. This contradicts the hypothesis. —

!The author thanks S.Usuda who first noticed the existence of this case.
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e Suppose that v; < 2. Then applying a corollary to Lemma 3 for Z? = 2,
we obtain
(0 =3)(2f + Bo — 6) = 6.

Thus letting ¢ = 0 — 3 be a divisor of 6, we obtain

6
B(i+3)+2f—-6=-=
1
where ¢ = 1, 2.
6
(1) If B =0, then 2f — 6 = —, which implies that i = 1,0 =4, f = 6.
i

(2)fB=1,theni+3+2f—6= ?,f > 2., which implies that i = 1,2.
Thus when 1 = 1, we get 0 =4, f = 4. While ¢ = 2 induces 0 =5, f = 2.

(3) T B > 2, then B(i +3) + 2f — 6 — ? > 2(i +3) + 2f — 6, which
implies that i = 1,B = 2,0 = 4, f = 2.

Therefore, the type is [5 * 7, 1;213] or [4 * 6; 2] or its associates. In the
former case, D? = —7 and in the latter case D? = —8.

e Suppose that v; > 3. Then D? > —4 — 1 > —6.
vy —

Moreover, if v; > 6, then D? > —4. If vy > 4, then D? > —5.
In what follows we shall study pairs in the cases : D? = —3, —4, —5, —6.

8.3 case D? = -3

Suppose that D? = —3. Then K¢ = D?> 4+ 2 = —1 and so r = 9. Therefore,
& =-143/2=1/2 and @ = 4 — 1 = 3. By sharper estimate,

OECW =n+uv+3.
If p > 1 then 77 < (5 — 31v1)p; hence

n+ (1 +3)p < (1—3p)r1 +5p+3.

17
Suppose that vy > 4. Then p = 1,1, = 4. Hence, Ol % — f £ 0. Thus
the equalities hold and then vy = 4,(,, = t3 = 0,0 = 9, f = 4; hence,
go = 24 + 36 = 60. By genus formula,

to+1t3+1t4 =9,t3 = 0,19 + 3t3 + 64 = 5Y.

Hence, 5t4 = 50,%4 = 10 > 9; a contradiction.
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Suppose that v; = 3. Then
(3Z2—-2D)(2Z—D) = (3%Zy—20)(22¢—C) = 15—2, (3Z—2D)(2Z—-D) = 6Z°4+2D?* = 6.

Hence, 75 = 8. From

(0 =5)(B—-10) =71 =8

it follows that 5
c—5=2,B-10=4.

Thus ~
oc=7,B=14;7B +2f = 14.

This implies that the type is [77; 3!, 22] or its associates. Moreover,gy = 36
and hence, by genus formula,

to+13 =29,

to +3t3 =go — 1 = 35.

Thus, 2t3 = 26;t3 = 13,t2 = —4, which is a contradiction.
Therefore, p = 0 has been established and so Formula IT becomes

Coy =n+v1+3.

Supposing that 1 # 0, we shall derive a contradiction.
Recalling that n = —2(vy — 2)7y1, we obtain

Gy =n+1r1+3=-2u1—-2)11+11+3.

Assume that v; > 4. Then from (,, > 0, it follows that y; = 1. Hence,
(,, = 7—vi. Note that v; = 1 implies that B = 21 B + 2f) = 2 + 4uy.
Hence, g9 = 2v1 (211 — 1).

Moreover, note that

Cyl = F(I/l) = (I/1 — 3)$1 + 2(1/1 — 4).772 + -
Thus if {,, # 0, then (,, > v; — 3, which implies that v; < 5.
Bo
eIfry =7,then(, =0,0 =14 and -10 =7 = (o—4)(o—f—7). Thus
go=13-14 =182,t3 = t4 = t5 = t¢ = 0 and moreover,

F=ty+tr =9, ty+2lt;=gy—g=182—1=18l.

38



But from this, it follows that 10t; = 86; a contradiction.
o If 1 =5, then 0 =10 and (,, =7 — 1 = 2. By definition,
2>, = 23 + 244,
Hence, t3+t4, =1 .
When t3+t4 =1, weget 2=(,, =n+ 11+ 3 =n+38; thus
“6=n=(0 (o~ f - 2) =6(10~ [~ 5B).
Hence, 11 = f 4+ 5B and so gy = 90. Therefore,
t3+ts=1,to+1t3+ta+1=09,

to + 3t3 + 624 + 105 = 90 — 1 = 89.

Hence, t4 + 3t5 = 26. But since ¢4 = 0 or 1, it follows that 3t5 = 26,25 ;a
contradiction.

elfy) =4, theno=8andt3=(, =7—v; =3. Then gy =2-4-7=56.
Hence,
t3 < 3,to+ 13+t =9,

to + 3t3 4+ 6t4 = 56 — 1 = 55.
Hence, t3 = 3,t4 = 8,12 = —2; a contradiction.
o If 1y =3, then
(3Z—-2D)(2Z—D) = (320—20)(2Zo—C) = 152, (3Z2—2D)(2Z—D) = 6Z*4+2D* = 6.

Hence, 75 = 8. From

(0 =5)(B—-10) =71 =8

it follows that 5
c—5=1,B-10=8.

Thus :
0c=6,B=18;6B +2f = 18.

This implies that the type is [6+9; 33, 22] or its associates. Moreover,gy = 40
and hence, by genus formula,

to+t3 =9, 194+ 3t3=40—1=39.

Hence, t3 = 15,3 = —6; contradiction. Therefore, n = 0 is established. —
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8.3.1 casen=20

B
n = 0 implies that if ¢ > 4, then 0 — f — 22 — 0. In this case, 2gg =

2
(0 —1)(2f + Bo —2) =2(0 — 1)2.
From the definition of (,,, it follows that

C,,l:I/1+3:(I/l—3)x1+2(1/1—4).722+3(I/1—5)$3+"~,

where
Ty =t3+ 1ty 1,02 =1t4+t, 2,23 =15+1%, 3," .

Define a function F(n) to be 37| p(n—p—2)z, where y = [n 5 l,zp =
tp—l—? + tn—p-

Then the values of F(n) are n — 3,2(n —3),2(n —4),3(n —5),n — 3+
2(n —4),---.

)
Lemma 7 pr<q§nT, then p(n —p —2) < g(n — q — 2).

Proof: p(n—p—-2)—q(n—q—-2)=-p—-q(p+q—(n—2)) <0. —

Hence, when {,, = v1 + 3, from v1 + 3 = F(v1) > 2(v1 — 4),2(11 — 3),

it follows that 14 < 11. Thus, we shall study pairs in the following cases
according to the value of 11 < 11.

e If vy = 11, then o = 22, gg = 21? = 441 and
vi+3=14=F(11) =8z + 14y + 18z3 + - - -

sthus 1 =0, 29 =1. Since t3 =t10=0,t4+tg = 1,t5 =t =0,t =17 =0
, it follows that

to+tg+tg+t11 =9, 1o+ 6t4 + 36t9 + 55ty = 440.
From this, we get
to+t11 =8, 5ty + 3dtg + 54t = 431, 35tg + b4t = 431 — bty.

Then 54t1; = 426, or 54¢1; = 396; a contradiction.
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e If 1 =10, then

13=1v1+3=F(10) = Tzy + 12x9,
which is impossible.
e If vy =9, then o = 18, g9 = 17? = 289 and

12 = F(9) = 621 + 1025 + 1223.

Hence, here are two cases a)z; = 29 = 0,23 = 1, and b) 1 = 2,29 = 23 = 0.
In case a), t3 =tg = 0,t4 =ty = 0,t5 + t6 = 1.

to+ts+1t6+1t9g =19, o+ 10t5 + 15t + 3619 = 288.
From these,
9t5 + 14tg + 35tg = 279, 5tg + 3btg = 270, tg + Ttg = 54.

Since tg = 0 or 1, then 7tg = 54 or 53; a contradiction.
In case b)/ ts+tg =214 =t5 =tg =17 =0.

to+t3+1ts+19g =19, 1o+ 33+ 28tg + 3619 = 288.

From these,
2t3 + 27t 35tg = 279, bitg + Ttg = Hb.

Since tg = 0 or 1, 2, then 7tg = 55 or 50,45; a contradiction.

o If y; = 8§, then
11 = F(8) = 51 + 8z2 + 9z3.

There exist no solutions.
e If vy =7, then 0 = 14, g = 13? = 169 and

10 = F(7) = 4z1 + 6.
Then x1 = x9 = 1;thus t3 + tg = 1,14 + t5 = 1 and therefore,
to+t3+ts+1t5+ts+17 =9, &2+ 3t3+ 6t4 + 10t5 + 15t6 + 217 = 168.
Hence,

2454+4t5+12t6+20t7 = 1589, 4t5+12t5+20t7 = 152, 154 3tg+ Dty = 38.
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Then t7 = 7,ty = 0,14 = ts = 1,13 = t5 = 0. Thus
D*=2-14-14-4-4-6-6-7-7-7=-3.
The type is [14 * 14; 77,6, 4] or its associates.
e If v =6, then 0 = 12,99 = 112 = 121 and
9 =F(6) = 3z + 4.
Thus, 1 = 3,29 =0, i.e. t4 = 0,13 + t5 = 3 and therefore,
to+t3+1t5+1t6 =9, to2+ 33+ 10t5 4+ 15t = 120.
Hence,
2t + 9t5 + 14t = 111,  Tt5 + 1446 = 105; 15 + 2t = 15.

That is, tg = 6,15 = 3,to =t3 =0 and so D* =2-122 —3.5%2 —6- 6% = —3.
The type is [12 * 12; 65, 53] or its associates.

e If vy =5, then 0 = 10, g9 = 9% = 81 and
8 = F(5) = 2x1 = 2t3 + 2t4.
Then z1 = 4, i.e. t3 + t4 = 4 and therefore,
to+tg+ta+1t5 =9, o+ 3t3+ 6ty + 10t; =81 — 1 = 80,

124+ 543ty + 915 =80, 3ty 4+ 95 = 63; 14 + 3t5 = 21.
But t5 < 5,4 < 4, which contradicts t4 + 3t5 = 21.

o If vy =4, then 0 = 8,99 = 7? = 49 and 7 = F(4) = t3. Moreover,
to+ts+ts=9, to+3t3+6t4 =49 —-1=48.
But 5t4 = 25; t4 = 5,t3 = —1; a contradiction.
e If v = 3, then 0 = 6, gy = 5° = 25 and by genus formula
to+1t3=9, ta+3t3=25-1=24.

But 2t3 = 24 — 9 = 15; a contradiction.
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8.4 case D? =—4

Suppose that D? = —4. Then Kg¢? = D> +2 = —2 and so r = 10. & =

B
—1+41 =0 and « = 4. Moreover, §2=o+f—8+70, and

0§Cl/1:77+4_§2p'

IfB#1,thenn<0and 0<(, <4—E&p<4—6p. Hence, p=0.
IfB=1,thenn—¢p<p(—24+10—0—f—2)=p(6 — 0 — f).
Supposing that p > 0, we get 0 > 7 and f > 3. Hence, 0 < (,, =
n+4—Ep < 4—4p, which implies that p = 1,0 =7, f = 3,90 = 12421 = 33.
By genus formula, we get
to+1t3 =10, 2+ 3t3 =33 —1=32.

Thus 2t3 = 32 — 10 = 22;t3 = 11 > 10; a contradiction. Therefore, p = 0 is
verified. By the formula, we get

0<¢,=n+4<4.
Hence, 0 < n+ 4.

8.4.1 casen#0

Ifn#0,thenn <4—0=4-2uv.
Actually, n = (0 —4)(0 — f — Bo/2) = (2v1 — 4)(2v1 — f — Bry) < 0,
that is a multiple of 214 — 4.
If {,, > 1, then vy >4 and so 0 > 2 x 4 = 8. Hence, when n # 0, —n is
a multiple of 2v; — 4 > 4; thus n = —4 and (,, = 0.
Therefore, we may assume that (,, = 0 and then n = —4 and —n =
(2v1 —4)(2v1 — f — Bry). Hence,
4=—n=—(2v1 —4)(2v; — f — Bry).
Therefore, we have two cases (1) v —2 = 2,21y — f — By; = —1, (2)
V1—2:1,2V1—f—BV1:—2.
In case (1), 11 = 4,t3 = 0,99 = 56. By genus formula,
to +1t4 =10, 2+ 6t4 =56 —1 = 55.

Then ty = 1,#, = 9. The type is [8 x 9;4”,2] or its associates.

In case (2), 11 = 3,90 = 35. By genus formula,
to+1t3 =10, to+3t3 =35—1=34.
Then 2t3 = 24,t3 = 12 > 10; a contradiction.
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8.4.2 casen=0
Suppose that = 0. Then (,, = 4 and
4:F(V1) = (Vl _3).’E1+2(V1—4)x2+... .

From 4 > vy — 3, it follows that 1y, < 7. Therefore, we examine in the
following four cases:

o If 1y =7, then 0 = 14, g9 = 13? = 169,4 = F(7). Hence, t3 + ts = 1 and
tg =15 = 0. Thus,
to +t3+tg +t7 =10, 1o+ 3t3 + 15tg + 21t7 = 169 — 1 = 168.

Then
to+1r =9, 23+ 14t + 207 = 158,

ts + Ttg + 107, =79, 3tg + 5ty = 39,16 < 1.

This is impossible.
e If v = 6 then 0 = 12,99 = 112 = 121, 4 = F(6) = 321 + 4x2. Thus,
1 =0 and z9 = 1 ;hence, t3 =15 = 0,14, = 1 and so

to +ty+ts =10, to + 6t4 + 15t = 121 — 1 = 120.
Therefore,

t2+t6:9, t2+15t6:120—6:114.

Thus 14t¢ = 114 — 9 = 105; a contradiction.
e If vy = 5 then 0 = 10,99 = 9> = 81,4 = 2z;. Thus, ; = 2 ;hence,
ts + 14 = 2.

to+t3+t4+1t5 =10, 12+ 3ts3 + 64 + 10t5 = 80.

Hence,
to+1t5 =8, 2t3+ 5t4 + 95 = 70,

ty + 3t5 = 22.
Finally, to = t3 = t4 = 1,t5 = 7. Thus the type is [10 x 10;57, 4, 3, 2] or its

associates.

eIf vy = 4, then 0 = 8,90 = 7* = 49,¢,, = 4 and (,, = t3, i.e. t3 = 4.
Hence,
to+t3+t4 =10, to + 3t3 + 614 = 48.

Hence, ty = 0,t3 = 4,1, = 6. The type is [8 * 8;4°, 3] or its associates.
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8.5 case D?= -5
Suppose that D? = —5. Then K¢? = D> +2 = -3 and so r = 11. & =

B 17
5+5/2+1—11=—1/2anda=5.Moreover7§2=a+f+70—7and
o
0§<1/1:7’+5_§_§2p~
Suppose that p > 1,11 > 3. Then ¢ > 7 ; hence, & > 5.
IfB#lthenOﬁCyl§5—%—5p<0;acontradiction.
-4
Iflethennganandso
o o—14
0§CV1§5_§_(€2_ 2 )p-
—4 13
But,fg—OT:0+f—7—620and
o o—4 o 13
5——— — <5—- - — - — < -2
2 (&2 5 )p < 5 o+ f 5 <
.. . . Bo o
This implies that p = 0. Inpartlcular,nzo—f—Tzi—fzyl—fﬁ().

Therefore, in both cases, n < 0 and hence,
0<¢, =n—1v1+5< -1 +5.
o If 1y =5, then (,, = 0,0 = 10,7 = 0. Hence, t3 = t4 = 0,90 = 81. By
genus formula
to +1t5 =11, 9+ 105 =81 — 1 = 80.
Hence, 9t5 = 80 — 11 = 69; a contradiction.

elfvy =4, theno=8n=(c—4)(c —f—Bo/2) =48 - f—-4B) = -1
or 0. Hence, n = 0 and thus (,, =t3 = 1,90 = 49. By genus formula,

to +t3+ts =11, 1o+ 3t3 +6t4 =49 — 1 =48.
Hence, 5t4 = 35,t4 = 7,13 = 3. The type is [8 * 8;47,3,23] or its associates.

o If vy = 3 then 0 = 6,(,, = 0,n = —2. Hence, f + 38 = T;g0 = 30. By
genus formula,
to+1t3 =11, 1o+ 3t3 = 29.

Hence, t3 = 9 and t3 = 2. The type is [6 * 7; 3%, 22] or its associates.
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8.6 case D? = -6

Suppose that D? = —6. Then v; = 3, K¢? = D? 4+ 2 = —4 and so r = 12.
By the same argument as before, p = 0,0 = 6 are obtained and so gy =
5(3B8 + f —1). By genus formula,

to+1t3 =12, to+ 3t3 =g¢ — 1.

Hence, 24 > 2t3 = g9 — 13 = 158 + 5f — 18, which implies that t3 =
15B +5

1B +57 9 < 12. Therefore, 3B + f < 8 and thus the type is [6 % 6; 35, 26]
or its associates.

Theorem 5 Suppose that Z?> =2. ifg>1, P[D] = Z?+29—1=2g+1.
1. If g = 4, then D? = 18 and the type is [3 % 3;1] or [3 % 6,2;1].
2. If g = 3, then D? = 8 and the type is [4 x 4;2°] or its associates.

3. If g = 2, then either (1) D?> = 1 and the type is [6 * 6;37,2] or (2)
D? =0 and the type is [4 * 5;2!°] or its associates.

4. If g =1 then P,[D] = Z? + 2 = 4.
(a) If D? = —3, then the type is [14 % 14;77,64] or [12 % 12;65,5%] or
1ts associates.

(b) If D? = —4, then the type is [8 * 8;4%,34] or [8 % 9;4°,2] or [10 *
10;57,4,3,2] or their associates.

(c) If D? = —5, then the type is [6 x 7;3%,2%] or [8 % 8;47,3,23] or
their associates.

(d) If D?> = —6, then the type is [6 x 6;3%,25] or its associates.
(e) If D?> = —7, then the type is [5x 7,1;23].
(f) If D? = —8, then the type is [4 * 6;2'4] or its associates.

9 curves with Z2 =3
Assume that P»[D] = 3g. Then Z? = g + 1 and hence, g +1 = Z? =

K% — D? + 4g — 4. First , if the type is [d;1] then d = 7,g = 15, Z% = 16.
Second, assume that (S, D) is derived from a # minimal model.
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Defining / to be 4g — D?, we obtain D? = 4g — | and K% =5+ g — I.
From Kg = 8 —r, it follows that r = 3 + [ — g. Then by definition,

l Bo l
=4——a=101-4,& = - — +4-Z
&o 5 & l—4,=0+f -8+ 5 + 2
We shall give an estimate of the magnitude of [.
Lemma 8 If5+4 g > 1 then | > 8.
Proof: By K2 =5+¢g—1>0, we have |D — Z| = | — Kg| # (). Hence,
(22 — D) -(Z — D) < 0. Therefore,
27% -3Z-D+D*<0.
Hence,
2(g+ 1) =27% < 65 — D,
and so 8 < [. 1

If I < 6 then applying the previous lemma, we get 5+ g > 6 > [ and
thus, | > 8 ; a contradiction.

Ifl=7and g > 2 then 5+ ¢g > 7 =1 and hence, [ > 8 ; a contradiction.

Therefore, in the case when | = 7, we may assume that ¢ = 1. Then
Z% = 2 and D? = —7. By Theorem 8, the type is [5* 7,1;2'3].

When [ > 8, we shall consider in the following two cases: A) case v > 3
and B) case vy < 2.

9.0.1 A) case v >3

In order to study the case when | > 8, we begin with the case in which
o > 6. Then |3Z —2D| # () by Theorem 1 and since 2Z — D is nef, it follows
that

3Z2-2D)-(22-D)>0

?

and hence,
6Z° —7Z-D +2D?* > 0.

By
6Z% —7Z-D+2D? =6(g+1) — 145+ 2(4g — 1) = 20 — 21,

we obtain [ < 10 ;hence, I = 8,9, 10.
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Moreover,

0 <G =n+&o+a—Ep

!
=1+ (@4~ )o+1-4-&p.

To show that p = 0, we assume p > 1. Then ¢ = p + 2v; > 7 and since
[ > 8, it follows that

lo—1 B
0§Cu1<n+4a+4—OT+l—a—f—70
3l—0ol Bo
=n + 30 — _ 29
n+3c—f+ 5 5

First assume B # 1. Then by o > 7 ,we get

l B 3l
< _-_= 2
0_CV1<(3 5 2)0+2 f

B
§21—2l—77—f.

However, since [ > 8, it follows that

B B
21—2l—%—f§5—%—f§—2.

Second, assume that B = 1. Then recalling that ¢ > 7, f > 3,B =1, we
get

0< ¢y, §(4—é)0+(l—4)+n—€zp

(- Do+ -4+ @+5—f o)

<=0t =4+ 241~ o)

3l l
3l 7l
< — — 92— _ —
<G HA-2-f-F)o

<19—f—20<0.
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Hence,
0< ¢y <19-f-20<0.

If(, =0,then! =8,0="7p= 11 = 3.B = 13,90 = 33. By genus
formula,

tottz=r=11—-g, to+3t3=r=9gy—9g=33—g.

Hence,2ty = —2g. This implies that g = 0.
This is a contradiction and thus p = ¢ — 2v; = 0 is checked. Therefore,

l
Ca=n+4=5)o+1-4

has been established.

9.1 case D?=4g—8

Thenl=8,r=3+1—-g=11—g. If g=1then Z? =2, D? =49 — 8 = —4.
This case has been already treated in Theorem 5. So we may assume g > 2.
Since o = 2v; we get

CV1 =n+ 4.

9.1.1 casen=20
Ifn = 0 then g — f - BO'/2 = 0 and CV1 = 47 hence./ we Obtain the equation:
4=F(r) = =3z + 21 —4)wo+ - .

Then from 4 > vy — 3, it follows that v, < 7.

e If »; = 7 then 21 = 1 and hence, 0 = 14,9y = 13? = 169 and t3 + t =
z1 = 1,14 = t5 = 0, which yields

by + tg + tg + t7 = 11 — g, b + 3t5 + 15t + 21¢7 = 169 — g.
Thus
to+ty = 10—g, 2t34+1416+20t7 = 158; 6t6+10t7 = 78, 3te+5t7 = 39,16 < 1.
This is impossible.

e If vy =6, then 0 = 12,99 = 112 = 121 and 4 = F(6) = 3x1 + 4x3. Thus,
1 = 0,290 =1 ;hence, t3 =t5 = 0,14 = 1 and so

to+ts+tg=11—g, ty+6ts+ 15tg=121—g.
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Accordingly,
5tq + 14t = 110.

Thus 14t = 110 — 5t4 = 105; a contradiction.

o If vy = 5, then 0 = 10,90 = 9?2 = 81,4 = F(5) = 2x;. Thus, z; = 2
;hence, 3 + t4 = 2 and therefore,

to+t3+ts+1t5=11—g, to+ 3t3+6t4+ 10t5 =81 —g.
Hence,
2ts + bty + 9t5 = 70, t4 + 3t5 = 22.
Then ty = 1,t3 = 1,5 = 7,1ty = ¢; thus ¢ = 2 — ¢ and the type is [10 *

10;57,4,3,2°] or its associates.

e If vy = 4, then 0 = 8,90 = 7% = 49,(,, = 4 and (,, = t3, i.e. t3 = 4.
Hence,
to+t34+1t,=11—g, to+ 3t3+ 614 =49 —g.

Hence, 2t3 + 5t4 = 38;t4 = 6,12 = 1 — g. Thus ¢ = 1 and the type is
[8 * 8;49,3%] or its associates.
9.1.2 casen#0

If n # 0 then n = —4,v1 = 3,4;(,, = 0 and therefore, we have two cases:
(Dry =3 and (2) v =4.

e If vy =3, then from n = —4,n = 2(v; — 2)(4v1 — 211 B — f), it follows
that 3B + f = 8 and so g9 = 35. By genus formula

to+t3 =11 —g, 19+ 3t3=35—g.
Hence, 2t3 = 24,t3 = 12,19 < 0; a contradiction.
e If 1y = 4, then by the same argument as before, (4 = 0,13 =0,(2 — B)4 —
f=—1and gg = 56. By genus formula

to+ty =11 —g, 19+ 614 =56 —g.

Hence, 5ty = 45;t4 = 9. And hence to = 2—g and the type is [8%9;4%,2¢], g =
2 — ¢ or its associates, where D? = 4g — 8.
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9.2 case D?=4g—9

Suppose that D? =4g —9. Thenl =9 and r = 12 — g.
Therefore,
0<¢,=n—11+5< - +5.

e case 1 = 5 Then (,, = 0,0 = 10 and n = 0. Hence, {3 = t4 = 0 and
go = 81. By genus formula
to+ts =12—g, 1o+ 10t5 =81 —g.
Hence, 9t5 = 81 — 12 = 69; a contradiction.
e case v1 =4 Then 0 = 8,0 < (,;, =n+1; -1 < 7. Moreover,
n=(oc—4)(c — f —Bo/2) =48 — f —4B) = —4,0.
Hence, n = 0 and thus {,, = t3 = 1, g0 = 49. By genus formula,
by+t3+1ts=12—g, ty+ 3t3+ 6ty =49 —g.

Hence, 5ty = 35,t, = 7 and t3 = 4 — g. The type is [8 x 8;47,3,2479] or its
associates, where g =1,2,3,4.

e case ] = 3. Then (,, =0 and o = 6,(,, = n + 2; thus n = —2. Hence,
f+ 3B =7Tand gg = 30. By genus formula,

ta+t3=12—-g, ta+3t3=30—g.
Hence, t3 = 9,5 = 3 — g. The type is [6 * 7; 3%, 2379] or its associates where
g=1,2,3.
9.3 case D?=4g— 10
Suppose that D? = 4g — 10. Then [ = 10,7 = 13 — g,
0<¢, =n—2v1+6<—=2(v; —3).

Hence, vy = 3,0 =6 and n = 0,38 + f = 6. Clearly, gg = 25.
By genus formula,

to+t3 =13 —g, 1o+ 3t3=25—g.

Hence, t3 = 6 and t = 7 — g. The type is [6 * 6; 35 2779] or its associates,
where g =1,2,---, 7.
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9.3.1 B) case v} <2

Since v; < 2, it follows that
4=2(g+1)-29=22>-D-Z=02Z—-D)-Z =13 —2.
Hence, 73 = 6. From
(0 =3)(2f + Bo — 6) = 6,

we obtain either (1) 0—3 = 1,2f+Bo—6 =6or (2) 0—3 = 2,2f+Bo—6 = 3.
case (1) 0 = 4,2f + Bo = 12,99 = 15. The type is [4 x 6;2"] and its
associates , where g =15 —r =1,2,--- ,14 and D? = 4g — 12.
case (2) 0 =5,2f + Bo =9, g9 = 14 and the type is [5 % 7,1;2"] , where
g=14—r and D? = 4g — 11.

Accordingly, we establish the following result:

Theorem 6 Suppose that Po[D] =3g > 1. Then Z? = g+ 1 and

e case S = P2. Then the type is [T;1] and g = 15, D% = 49.

e case v1 < 2. Then the type is (1) [4 % 6;2"] or its associates , where
g=15—7r and D? = 49 — 12, or (2) [5%7,1;2"] , where g = 14 — r and
D? = 4g — 11.

e case v; > 3. Then

1. if 5 > g > 7 then the type is [6 * 6;35,2779] or its associates , where
D? = 49 — 10.

2. If g =4 then

(a) if D? =T then the type is [8 * 8;47, 3] or its associates.
(b) If D? = 6 then the type is [6 * 6;35,23] or its associates.

3. If g =3 then

(a) if D? = 2 then the type is [6 x 6; 35, 2%] or its associates.

(b) If D?* = 3 then the type is [8 x 8;47,3,2] or [6 * 7;3°] or their
associates.

4. If g =2 then

(a) if D? = 0 then the type is either [10 * 10;57,4, 3] or [8 * 9;4°] or
their associates.
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(b) If D?> = —1 then the type is either [6 % 7;3% 2] or [8 * 8;47, 3, 22]
or their associates.

(c) If D? = —2 then the type is [6 % 6;3%,25] or its associates.
5. Ifg=1 then

(a) if D? = —4 then the type is [8 * 8;4%,34] or [8 x 9;4°,2] or [10 *
10;57,4,3,2] or their associates.

(b) If D?> = —5 then the type is [6x7;3%,22] or [8%8;47,3, 23] or their
associates.

(c) If D?> = —6 then the type is [6 * 6; 3%, 2] or its associates.

When o = 3, the invariants are easily computed:
A=2-g=-1l,a=7-9w=-9,Q=-3-7.
Moreover if the type is [d; 1],d > 4, then

d—3)(d - 6)

Al d(d-9)
2

,a=d(d—6),w= 5

Q= (d—3)(d—9).

10 curves with P [D] =1

By Lemma 3, when ¢ > 4, we see that 2Z — D is nef and so (2Z—D)-Z > 0.
Hence, 2722 > D - Z = 2g, i.e. Z? > g. Thus we shall study pairs (S, D)
with Z2 =g. Hence, (2Z —D)-Z=0and P,1[D]=2Z?-g+1=1;Q =0.
Noting that 0 > 4 or d > 6 for the type [d; 1], by Lemma 3, we get o0 = 4
and 2Z — D ~0or d=6.

Thus

0~2Z—D=D+2Ks~C+2Ky~ (f —4+2B)F..

Hence, f — 4 + 2B = 0. Therefore, the type of the curve turns out to be
[4%4;2"] or its associates where r < 7. The pair is birationally equivalent to
a pair of type [6;271!]. Thus we obtain the following result.

Theorem 7 If Po1[D] = 1, then A = 0,Z? = g and the type is [6;1] or
[4 % 4;2"] or its associates where r < 7.
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Corollary 4 Under the assumption o > 4, P,1[D] = A+ 1 =1 if and only
if2Z ~ D, i.e.D +2Kg ~ 0,

Proof:
From the formula P 1[D] = Z? — g + 2, the result follows immediately.

1

Definition 4 If the pair (S, D) satisfies that D +mKg ~ 0, then D is said
to be an anti m— canonical curve .

The pair defined by 3> = 2™ [[;Z(z — ) has the minimal model (S, D)
of type [2m * 3m, 1;m>], which is an anti m— canonical curve for m > 1.

So the theorem states that if P»[D] = 3g — 2 > 0, then the curve D is
anti-bicanonical.

11 curves with P»;[D] =2

Suppose that P, 1[D] = 2. Then Z? =g and Z - D = 2g — 2.
First, consider the case in which vy < 2.

Lemma 9 If Z? = g+ where the type is [d; 1], then (d—3)(d—6) = 2i+2.

Proof: By Z%2 = (d—3)%,Z-D = d(d — 3) = 2g — 2, we obtain d(d — 3) =
29 — 2 =2(d — 3)? — 2i — 2 and then (d — 3)(d — 6) = 2i + 2. —

In the case when 7 = 0 , there exists no solutions. Thus we consider
the case where (S, D) is derived from a # minimal pair (op,C). Applying
Corollary 2 to the case Z2 = ¢, we obtain

7= (0—3)(B—6)=4.

Hence, 0 — 3 takes one of the following values 1, 2.

(1) If 0 = 5, then 5B + 2f = 8, which is impossible.

(2) If 0 = 4, then 4B 4+ 2f = 10. Then (f,B)= (5, 0), (3, 1), (1, 2).
go =12 > r > 1. Thus the type is [4 * 5;2"], where g = 12 — r.

Second, consider the case in which 11 > 3. By |D + 3Kg| # 0, we get

(3Z-2D)-Z = (D+3Ks)-Z > 0and (3Z2—-2D)-Z = 32%-2Z-D = 3g—4g+4;
thus g < 4.
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e Suppose that g = 4. Then (3Z — 2D) - Z = 0. Since Z is nef and big,
by Hodge’s index theorem , we get (32 — 2D)? < 0 or 3Z ~ 2D. However,

0> (3Z—2D)- (32 —2D) = (3Z — 2D) - (—2D)

0< (32 —2D)-(2Z — D) = (3Z — 2D) - (-D).

Hence, (3Z — 2D) - (-=D) = 0. Thus, 3Z ~ 2D, ie. D ~ —3Kg. Since
D+ uKg ~ (v — 3)Kg and k(S,Kg) = —oo, it follows that v; = 3.
Therefore,

;
0~D+3Kg~C+3Ko+ Y (3—v))E;.
7=1

Hence, v1 =--- =1, =3 and
0~C+3Ky~(0c—6)Ay + (e—6—3B)F,.

Thus 0 =6,e — 6 — 3B = 0;i.e. e =6+ 3B. Therefore, gg = 25,25 — 3t3 = 4;
hence, t3 = 7. This implies that the type is [6 * 6;37] or its associates.

e Suppose that g =3. Then D-Z =4,(3Z2-2D)-Z =1,(3Z-2D)-D =
2(6 — D?). Since 2Z — D is nef, it follows that

(32 —2D)-(2Z — D) >0, (3Z—2D)-(2Z—D)=2—12+2D>.

Hence, D? > 5.
On the other hand, 3 = Z? = K¢? — D? 4+ 8; thus K¢2 = D? — 5 > (.
Hence, by Riemann-Roch, we get | — Kg| # () and so

0<(-Ks)-(2Z2-D)=(D—-Z%)-(2Z - D) =6- D

Thus D? < 6. Combining the previous results with D? > 5, we obtain
D? =5,6.

11.1 case D? =6

Then Kg? = 1,r = T;thus §g =7-3+3-7=0, a=8—-6=2, and

B D? B
62:0+f—1+70+g—7—7":0+f+70—8.

We shall verify that p = 0. Actually, suppose that p > 1.
B

0+f—8+70 > 8, provided

If B#1then & > 6,0 <, <2 - 6p < 0; a contradiction.
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IfB=1thenn—&p<B3+7—4—f—0)p< —4p. Thus 0 < ¢, <
2 —4p < 0; a contradiction.

Therefore, p = 0 and so by the formula,
0< G =n+2<2.
If n = 0 then
2=(v1 —3)z1+2(11 — 49+ -

We have the following cases:
1)1 =3 =221y =ts+t3 = 1. Then 11 = 5,0 = 10 and gy = 81.
Moreover,

to+tg+ts+1t5 =7, 19+ 3t3+6t4+ 10t5 =81 —3 =7T78.

Thus ¢y + t5 = 6, 3t4 + 95 = 69;hence, t4 + 3t5 = 23. A contradiction.
2) vy —3=1,t3 =2. Then 11 =4,0 = 8 and gy = 49. Further,

to+t34+1t4 =7, to+ 33+ 614 =49 — 3 =46.

Thus to + t4 = 5,2t3 + 5t4 = 39;hence, 5t4 = 39 —4 = 35,t4 = 7; a
contradiction.

If n < 0 then by v; > 3, we see that 0 —4 > 2 and so n = —2,(,, = 0.
Then 6 — f — 3B = —1. Hence, gg = 30. But t9 +t3 = 7 and ty + 3t3 =
30 — 3 = 27; a contradiction.

11.2 case D? =5

Then Ks? =0 and r = 8; thus g =7—-5/2+3-8=-1/2, a=8-5=
Bo 1
B =0+ -8+ 3.
Suppose that p > 1.

3
Since v1 > 3, it follows that & > 3

3
IfB#1then0<(, <3-— % -3 < 0; a contradiction.

7
IfB=1then0<(, <3— % —3 < 0; a contradiction.

Therefore, p = 0 and so by the formula, we obtain

0§Cy1=77—%+3§3—1/1.
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Thus 11 = 3,0 =6,(,, =0, g0 = 25; hence,
ty+ty =8, ty+3ty=25—3=22
Then ¢, = 1,3 = 7 and the type is [6 * 6;37, 2] or its associates.

e Suppose that g = 2. Then Z? = 2 and the type is [4 * 5;2!0] or its
associates , where D? = 4g — 8 = 0. This case has been already treated in
Theorem 5.

e Suppose that g = 1. Then Z%? =1 and

1. if D? = —4 then the type is [4 * 5;2!1] or its associates , where D? =
4g — 8 = —4.

2. If D? = —3 then the type is [6 * 6;37,2%] or its associates , where
D?=4g— 7= 3.

3. If D? = —2 then the type is [8 x 8;47,3%] or its associates , where
D? =4g — 6= 2.

These case have been already treated in Theorem 5.

Theorem 8 Suppose that Py [D] = 2. Then Z? = g and
1. if D* = 4g — 8, then the type is [4 * 5;2"] or its associates, where
g=12—7r>0.
2. If D? = 4g — 7, then the type is [6 * 6;37,2°] or its associates, where
g=4—¢>0.

3. If D? = 4g — 6, then the type is [8 * 8;47,3%] or its associates.

12 curves with P [D] =3

Assume that P»1[D] = 3. Then Z? = g + 1 and hence, First , if the type
is [d; 1] then d = 7,9 = 15, Z? = 16. Second, assume that (S, D) is derived
from a #— minimal model.
Defining [ to be 4g — D?, we obtain D? = 4g — | and Kg =5+g—1L
From Kg = 8 —r, it follows that r = 3 + [ — g. Then by definition,
Bo l

l
fo 2,a /52 O'+f 8+ 9 + 9

We shall give an estimate of the magnitude of [.
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Lemma 10 If5+g > 1 thenl > 8.

Proof: By K2 =5+¢g—1>0, we have |D — Z| = | — Kg| # (). Hence,
(22 — D) -(Z — D) < 0. Therefore,

272 -37-D+ D?*<0.

Hence,
2(g+ 1) =22% < 65 — D?,

and so 8 < [. —

If I < 6 then applying the previous lemma, we get 5+ g > 6 > [ and
thus, | > 8 ; a contradiction.

Ifl=7and g > 2 then 5+ ¢g > 7 =1 and hence, [ > 8 ; a contradiction.

Therefore, in the case when | = 7, we may assume that ¢ = 1. Then
Z% = 2 and D? = —7. By Theorem 8, the type is [5* 7,1;2'3].

When [ > 8, we shall consider in the following two cases: A) case v > 3
and B) case vy < 2.

12.0.1 A) case v >3

In order to study the case when [ > 8, we begin with the case in which
o > 6. Then |3Z —2D| # () by Theorem 1 and since 2Z — D is nef, it follows
that

3Z2-2D)-(22-D)>0

?

and hence,
6Z%> -7Z-D +2D* > 0.

By
62> —7Z-D +2D* =6(g+1) — 14+ 2(4g — 1) = 20 — 2,

we obtain [ < 10 ;hence, | = §,9, 10.
Moreover,

0<qy =n+&o+a—Ep

l
277+(4—§)0+l—4—52p.
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To show that p = 0, we assume p > 1. Then ¢ = p + 211 > 7 and since
l > 8, it follows that

- B

0< ¢ <ntdota e l+l—0—f—70
3l—ol Bo
=1+ 30— f + =5 =

First assume B # 1. Then by ¢ > 7 ,we get

Il B 3l
0<Gy <(3—§—§)0+5—f
B
§21—2l—77—f.

However, since [ > 8, it follows that

B B
21—21—%—f§5—%—f§—2.

Second, assume that B = 1. Then recalling that o > 7, f > 3,B =1, we
get

0 Gy SU= o+ (=4 47— &

(- ot -4+ @+ 5 f-o

2
l l
<A-o+(-4+2+5-f-0)
3l l
3l 7l
<= _9_f_
<G H2UA-2-f-)o

<19—f—20<0.

Hence,
0<¢, <19-f-2<0.

If¢, =0,hen!l =80="7p=11 = 3,B = 13,90 = 33. By genus
formula,

t2+t3=’l”=11—g./ t2+3t3=T=go—g=33—g.
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Hence,2ty = —2g. This implies that g = 0.
This is a contradiction and thus p = ¢ — 211 = 0 is checked. Therefore,

l
G =+ (=)o +1-4
has been established.

12.1 case D? =49 —38

Thenl=8,r=3+1—g=11—g¢g. If g=1then Z? =2,D? =49 — 8 = —4.
This case has been already treated in Theorem 5. So we may assume g > 2.
Since o = 2v; we get

Gy =n+4.

12.1.1 casen =0

If =0 then 0 — f — Bo/2 = 0 and (,, = 4; hence, we obtain the equation:
4:F(V1) = (I/l —3)$1+2(1/1—4)[E2+“- .

Then from 4 > vy — 3, it follows that v, < 7.

e If »y = 7 then z1 = 1 and hence, 0 = 14,9y = 13? = 169 and t3 + t =
z1 = 1,14 = t5 = 0, which yields

to+t3+t6+1t7 =11 — g,t2 + 3t3 + 15t + 2117 = 169 — g.
Thus
to+ty = 10—g, 2t3+14t6+20t7 = 1568;6t6+10t7 = 78, 3te+5ty = 39,1 < 1.
This is impossible.

o If 1y = 6, then 0 = 12,99 = 11? = 121 and 4 = F(6) = 321 + 4z9. Thus,
21 = 0,22 =1 ;hence, t3 = t5 = 0,4 = 1 and so

to+ts+tg=11—g, ty+6ts+ 15tg=121—g.

Accordingly,
5t4 + 14t = 110.

Thus 14t¢ = 110 — 5¢t4 = 105; a contradiction.
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o If vy = 5, then 0 = 10,99 = 9?2 = 81,4 = F(5) = 2x;. Thus, 71 = 2
;hence, 3 + t4 = 2 and therefore,

to+t3+ts+1t5=11—g, to+ 3t3+6t4+ 10t5 =81 —g.
Hence,
2ts + bty + 9t5 = 70, t4 + 3t5 = 22.
Then ty = 1,t3 = 1,t5 = 7,1ty = ¢; thus ¢ = 2 — ¢ and the type is [10 *

10;57,4,3,2°] or its associates.

e If vy =4, then 0 = 8,99 = 7% = 49,(,, = 4 and (,, = t3, i.e. t3 = 4.
Hence,
to+ts+tys=11—g, to+ 3t3+ 6ty =49 —g.

Hence, 2t3 + 5t4 = 38;t4 = 6,12 = 1 — g. Thus ¢ = 1 and the type is
[8 * 8;49,3%] or its associates.
12.1.2 casen #0

If n # 0 then n = —4,v1 = 3,4;(,, = 0 and therefore, we have two cases:
(v =3 and (2) v =4.

e If vy =3, then from n = —4,n = 2(v; — 2)(4v1 — 211 B — f), it follows
that 3B + f = 8 and so g9 = 35. By genus formula

to+t3=11—g, 1o+ 3t3=35—g.

Hence, 2t3 = 24,13 = 12,15 < 0; a contradiction.
e If 1y = 4, then by the same argument as before, (4 = 0,3 =0,(2 — B)4 —
f=—1and gg = 56. By genus formula

to+t, =11 —g, 19+ 614 =56 —g.
Hence, 5ty = 45;t; = 9. And hence t, = 2—g and the type is [8%9;4%,2¢], g =
2 — ¢ or its associates, where D? = 4g — 8.
12.2 case D? =4g—9

Suppose that D? =4g —9. Thenl =9 and r = 12 — g.
Therefore,
0<¢,=n—11+5< - +5.
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e case v; = 5 Then (,, = 0,0 = 10 and 7 = 0. Hence, t3 = t; = 0 and
go = 81. By genus formula

to+ts=12—-g, 1o+ 10t5 =81 —g.
Hence, 95 = 81 — 12 = 69; a contradiction.
e case v =4 Then 0 =8,0 < (,, =n+1; -1 < 7. Moreover,
n=(o—4)(c — f —Bo/2) =48 — f —4B) = —4,0.
Hence, n = 0 and thus (,, = t3 =1, go = 49. By genus formula,
bo+ts+1ts=12—g, o+ 3t3+ 6t =49 —g.

Hence, 5ty = 35,t4 = 7 and ty = 4 — g. The type is [8 * 8;47,3,2479] or its
associates, where g = 1,2, 3,4.

e case 1 = 3. Then (,, =0 and 0 = 6,(,, = n + 2; thus n = —2. Hence,
f+ 3B =7and gg = 30. By genus formula,

to+t3 =12 —¢g, 19+ 3t3=30—g.

Hence, t3 = 9,5 = 3 — g. The type is [6 * 7; 3%, 2379] or its associates where
g=1,2,3.

12.3 case D? =49 — 10
Suppose that D? = 4g — 10. Then [ = 10,7 = 13 — g,
0< Gy =n—2v1+6<-2(1n —3).

Hence, vy = 3,0 =6 and n = 0,38 + f = 6. Clearly, gy = 25.
By genus formula,

to+t3 =13 —g, 1o+ 3t3=25—g.

Hence, t3 = 6 and to = 7 — g. The type is [6 * 6;3%,2779] or its associates,
where g =1,2,--- 7.
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12.3.1 B) case v} <2

Since v; < 2, it follows that
4=2(g+1)-29=22>-D-Z=02Z—-D)-Z =13 —2.
Hence, 73 = 6. From
(0 =3)(2f + Bo — 6) = 6,

we obtain either (1) 0—3 = 1,2f+Bo—6 =6or (2) 0—3 = 2,2f+Bo—6 = 3.
case (1) 0 = 4,2f + Bo = 12,99 = 15. The type is [4 x 6;2"] and its
associates , where g =15 —r =1,2,--- ,14 and D? = 4g — 12.
case (2) 0 =5,2f + Bo =9, g9 = 14 and the type is [5 % 7,1;2"] , where
g=14—r and D? = 4g — 11.

Accordingly, we establish the following result:

Theorem 9 Suppose that Po[D] =3g > 1. Then Z? = g+ 1 and

e case S = P2. Then the type is [T;1] and g = 15, D% = 49.

e case v1 < 2. Then the type is (1) [4 % 6;2"] or its associates , where
g=15—7r and D? = 49 — 12, or (2) [5%7,1;2"] , where g = 14 — r and
D? = 4g — 11.

e case v; > 3. Then

1. if 5 > g > 7 then the type is [6 * 6;35,2779] or its associates , where
D? = 49 — 10.

2. If g =4 then

(a) if D? =T then the type is [8 * 8;47, 3] or its associates.
(b) If D? = 6 then the type is [6 * 6;35,23] or its associates.

3. If g =3 then

(a) if D? = 2 then the type is [6 x 6; 35, 2%] or its associates.

(b) If D?* = 3 then the type is [8 x 8;47,3,2] or [6 * 7;3°] or their
associates.

4. If g =2 then

(a) if D? = 0 then the type is either [10 * 10;57,4, 3] or [8 * 9;4°] or
their associates.
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(b) If D?> = —1 then the type is either [6 % 7;3% 2] or [8 * 8;47, 3, 22]
or their associates.

(c) If D? = —2 then the type is [6 % 6;3%,25] or its associates.
5. If g =1 then

(a) if D* = —4 then the type is [8 * 8;4%,3%] or [8 x 9;4%,2] or [10 *
10;57,4,3,2] or their associates.

(b) If D* = —5 then the type is [6%7;3°,22] or [8x8;47,3,23] or their
associates.

(c) If D? = —6 then the type is [6 % 6; 3%, 26] or its associates.

When o = 3, the invariants are easily computed:
A=Z7°-g=-l,a=g-9w=-9Q=-3-7.
Moreover if the type is [d; 1],d > 4, then

Azw,azd(d—(ﬂ,w:

d(d—9)

2= (d—3)(d-9).

13 curves with () =1,2

Here, Q denotes (22 — D)%
Proposition 10 Assume that Q = 1. Then

1. (S, D) is obtained from a plane curve of degree 7 with at most double
points and g =15 —r < 15 or

2. the type is [6 * 6;37,2°] or its associates, where g =4 — € or

3. the type is [5;1] or

4. the type is [3 % 5,1;1].

Assume that Q = 2. Then

1. the type is [8 * 8;47,3%] or its associates or

2. the type is [6 * 6;35,2°] or its associates , where g = 7 — & and D? =
4g — 10 or
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3. the type is [5%5; 2"] or [5%10,2; 2"] or their associates , where g = 16—r
and D? =50 — 4r = 4g — 14 or

4. the type is [3  3;1].

Proof: First suppose that vy > 3. By Q = (2Z — D)?, we get
0< (32 —2D) - (2Z — D)

= (4Z —2D)-(2Z — D) — Z - (2Z — D)

= 2w — Z-(2Z - D).
Since 1 < Z - (2Z — D), it follows that

0< (3Z2—-2D)-(2Z —D)=2w—Z-(2Z — D) < 2u.
Suppose that Q = 1. Then Z-(2Z — D) = 2 ;hence, Z? = g,D? = 49— 7.

By Theorem 8, the type is [6 * 6;37,2°] and g = 4 — €.

Suppose that ) = 2. Then we have two cases (1) Z - (2Z — D) = 2 and
(2) Z-(2Z — D) = 4.

case (1) Z-(2Z — D) = 2. Then, Z%2 = g and D? = 4g — 6. By Theorem
8 the type is [8 * 8;47,32] or its associates, where g = 1.

case (2) Z-(2Z — D) = 4. Then, Z? = g+1,D? = 4g — 10. By Theorem
9, the type is [6 * 6; 3%, 2¢] or its associates , where g =7 — & > 0.

Second,suppose that v1 < 2 and (5, D) is obtained from (Xp,C') which
is # minimal. Then @ = (2Z — D)? = 74. Note that
74 = (0 —4)(Bo +2f - 8).
If @ =1, then either 1) 0 —4=1,B =1, f = 2 and the type is [5 % 7, 1;2"]
where g =24—-10=14,g=14—ror2) o —4=—-1,B =1, f = 2 and the
type is [3 % 5,1; 1] where go = g = 9.
2
IfQ=2thenoc—4=idiand B(i+4)+2f —8=-.
i
When B = 0, we obtain either 1) i = 1,0 = f = 5 and the type is
[6%5;2"] and go = 16, or 2) i = —1,0 = f = 3 and the type is [3 % 3;1] and
go=9 =4, )
When B =1, we obtain ¢ + 2f = —. This case cannot occur.
i
When B > 2, we obtaini =1, f =0,8B = 2,0 = f = 5. Thus the type
is [65%10,2;2"] and g = 16 — 7.
Finally, suppose that the type of (S, D) is [d; 1]. From 2Z—-D = (d—6)H,
it follows that (d—6)?H?=Q =1,2. Then@Q =landd=50rd="17.—
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13.1 Formula IT’
Since .
D+ I/1KS ~C+ VlKo + Z(Vl - I/j)Ej
Jj=1
it follows that

(D+1nKs)-(D+2Ks) = (1 Zy— (11 —1)C)-(2Z — C)+ > _ (1 —v5)(v; —2).
=1

Put

Pvy = (D + VlKS) . (D + 2KS), 9,/1 = (1/120 — (1/1 — 1)0) . (220 — C)

7

T

G =Y (1 =) (v = 2).

=1
Making use of the symbol ¢; which denotes the number of j— ple singular
points of the curve C, (,, can be rewritten as follows:

v1—1

Cn =D (1 =) =2t

=3
By Lemma 3, we obtain the next result:
Lemma 11 (Formula II’) Let p,, = (D + w1 Kg) - (D +2Kg). Then
P =201 Kg* — (1 + 1)D* +2(2 + 11)37,
and :
Py =G + 00, b = Ao —211) +
where A= (0 +v1 —2)B+2f —2v) —4 and v = 2(v1 — 2)(f + 1B — 21y).

Corollary 5 If p = 0 — 211 > 0, then A+ v > 3v1 — 5. Moreover, if
A+4+~vy=3v1 -5, then B=1 and 0 — 21, = 1.

Proof: IfBzOthenfiz2f—21/1—4 >2(p+211) -2y —4 > 211 —2 and

5 7 4:f—21/1 >p>1. Hence,A+7Z21/1—2+21/1—4:41/1—6.
vy —
If B =1 then

A=0c+4+1r—-2+2f -2 —4=p+2v1+1n —-2+2f—-21n —4>31n1 =5
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and 5 1= f +v1— 21, > 0. Hence, in particular, A+ v > 3v; — 0.
vy —
If B > 2 then
A2 204y —2)+2f — 21— 4 > 4y — Gand; 7 L= /B2 =0
vy —
[
Lemma 12
(nZ — (1 —1)D)-(2Z — D) =7, 42 —2(v1 — 2)* + (.-
Proof: From
(NZ — (1 —1)D) - Z =71y 41 — 21 — 1)* + 0(11),
(nZ — (1 —1)D) - D =71, — 20} + bo(11),
and B B
vy = 26(v1) — do(11),
it follows that
pin =(1Z — (1 = 1)D) - (2Z — D)
=27, 41 — 4(v1 — 1)2 +26(11) — (70, — 21/% + 0o(r1)
=2Ty, 41 — Ty — 2(V1 - 2)2 +4+ <V1
=Tv1+2 — 2(7/1 - 2)2 + CVl‘
—1

In particular, 6,, = 7, 12 — 2(v1 — 2)%.

14 rational curves

In what follows, we shall study minimal pairs (S, D) with [D] = 2 and
2
g(D) = 0. In this case, 0 > 4, = —-D? > 5 and Kg = Kg + (1 — E)D is

4
nef and big. Moreover, P»[D] > 2 and K[% =K2-B+4——>0.

Since o > 4, the next result has been proved in Proposition 3 for non-
rational curves.

Lemma 13 If g(D) =0 then 2Z — D = D + 2Kg is nef.
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Proof: First note that (D +2Kg)-D = —-+2(—-2)=p—-4 > 1. If
there exists an irreducible curve A # D such that (D + 2Kg) - A < 0, then
A2 < 0,A-Kg < —A-D/2 <0. Hence, A turns out to be an exceptional
curve and A- D < —2A- Kg = 2; thus A- D < 2. This contradicts the
minimality of (S, D). -

Lemma 14 K¢? < —1 and Z%> < f — 5.

Proof: Suppose that 8 —r = Kg? > 0. Then by Riemann-Roch, | — K| # 0.
Since D + 2K is nef, it follows that (D + 2Kg) - Kg < 0 and so

(D+2K5)~KS=,3—2+2(8—7“)§0.

Hence,
B—24+28—-r)=14-2r+ <0,

5
thus 7 + 3 <7+ g < r. Hence, 10 < r. This contradicts the inequality

8—r=Kg*>0.
Moreover, from (Z — D)? = Kg? < —1, the result follows immediately.
1

Proposition 11 If g(D) =0 then Q = 42> —8 — B = 4Ks> + 38— 8 > 0.
Moreover, 4Z% —8 — B = 0 if and only if o = 4.

Proof: Since 2Z —D is nef and |22 — D| # (, it follows that Q = (2Z —D)* >
0and Q =422 -8 —-3>0.

Suppose that 0 =4. Then 1y <2 and 22 —D =D +2Kg=C+2Ky ~
(f —4+ 2B)F, and hence, ) = 0.

Next, under the hypothesis Q = (2Z — D)? = 4Ks2 4+ 38 — 8 = 0, we
shall derive o0 = 4, examining the following cases, separately.
e case v1 > 3. Then

(3Z —2D)-(2Z - D) = (D + 3Ks) - (D + 2Kg) > 0.
On the other hand, 2(2Z — D) = Z + (3Z — 2D) and so
0=2Q =2(2Z-D)? =2(2Z—-D)-(2Z-D) = Z-(2Z—D)+(3Z—2D)-(2Z—D) > 0.

Hence, Z - (2Z — D)= (32 —-2D)-(2Z —D)=0. Thus D - (22 — D) =0,
which implies that f = —D? = —2D - Z = 4; a contradiction.
e case 1 < 2. Then

0=Q=m4, m=(—-4)(cB+2f-38),
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0=(c—4)(ecB+2f-28).

This implies that 0 — 4 = 0. —
Later, pairs (S, D) with @ = 1,2 will be enumerated.

Proposition 12 If D is a rational curve with k[D] = 2, then P[D] =
Z? 4+ 2.

Proof: Since Kjp is nef and big and [Kz] = D+Kg, it follows that H' (S, Og(D+
2Kg)) = 0 by a theorem of Kawamata. Hence, by Riemann-Roch,

(D+ Kg)-(D+2Kg)
2

:72'(2‘Z_D)+1:ZQ+2.

By 2(D + Kg) - D < 0, we get |2Z| = |2Z — D| + D; hence,

dim H°(S, Os(D + 2K3)) = +1

Py[D] = dim H*(S, O5(D + 2Ks)) = Z* + 2.

This implies that Z2 > 0, for P,[D] > 2. —
In later sections, pairs with I’»[D] = 2,3 will be enumerated.

15 logarithmic plurigenera

However, logarithmic m genera are a little hard to compute.

Lemma 15 If F is an effective divisor such that F - D < 0 where D is

F-D
an irreducible curve with f = —D* > 0, then letting a1 = [——], a1 D

p

becomes a fized component of |F|.
Further, dim |F| = dim |F' — a1 D/|.

Proof: There exist an effective divisor F; which does not contain D and

a positive integer a such that F' = Fy; +aD. Since F1 - D > 0, F - D =
—-F-D

F\-D+aD? = F; - D — a3 > —af. Hence, a >

-F.-D
obtain a > a; = | 3 1. I

. Therefore, we

2
Form >2,letY = (m—1)Kg=(m—-1)Kg+(m—1)(1— E)D7 which is
2
nef and big. Then [Y]| = (m—1)Kg+ [(m—1)(1— EHD and by a theorem
0.

of Kawamata, H'(S, Os(Ks + [Y])) =

?

69



2
Applying Lemma 15 to F' = mZ, we obtain F - D = —2m, a1 = |'7m'|
2
and Kg+ [Y]| =mKg+ [(m—1)(1 — E)—‘D

Claim 5

mZ — [%mw < mKg+ [(m—1)(1 - %)w < mZ.

Proof: It suffices to verify the inequalities:

m = [ < [m = )(1 = 2)] < m,
2m — 2 9
Let g = | ] and 2m —2 = g +ro. Then [(m—l)(l—E)] —m—g—1
and [27771] = [%W =gq+1or g+ 2. Hence, m — [%n} =m—q—2
orm —q— 1. —
Therefore,

dim |mZ| = dim |mZ — aD| = dim |Kg + [Y]].

Letting V =[Y],weget V=(m—1)Z—qD and Ks+V =mZ — (q+1)D.
By a vanishing theorem of Kawamata, H'(S,Ogs(Ks + V)) = 0 and so by
Riemann-Roch,

(K
dim |mZ| =dim |Kg + V| = w

_((m=1)Z —gD)-(mZ - (¢+1)D)

2
_m(m—1)Z° + (¢ +1)D? — (gm + (m —1)(¢ +1))Z - D
2
_m(m —1)Z* + (g +1)(=gB) +2(¢gm + (m — 1) (¢ + 1))
2
_m(m — 1)2? g+ roq + 1)'

2 2

Thus we establish the following result.
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Proposition 13 If D is a rational curve with 8 = —D?* and k[D] = 2 then,

2m — 2
lettinng[mﬂ | and 2m — 2 = qf + ro, we obtain
m(m — 1)Z? ro(qg+1
Py (D] = M V7 2) +mq+—0(q2 )1

In particular,
P3[D] = 32% + 3.

When m =4, we get 2m —2 =6 = g8 + ro. If 8 > 6 then ¢ = 0,79 = 6.
Hence,
Py[D] = 6Z* + 4.

If 6 =6 then ¢ = 1,79 = 0. Hence,
Py[D] =622 + 5.
If B =5 then g = 1,79 = 1 and in this case Z2? = 0. Hence,

Py[D] = 6Z% + 6 = 6.

15.1 invariant P;;[D]

By Lemma 13, if ¢ > 4 then 2Z — D is nef and big. Hence, H'(S, Os(Ks +
27 — D)) = 0. Noting that Kg +2Z — D = 3Z — 2D ~ D + 3Kg, by
Riemann-Roch, we get

(3Z — 2D) - (2Z — D)
2

dim H°(S, 05(3Ks + D)) = +1=32%+8+ D%

If o < 6 then (32 —2D)-F, = (0 —6)Ag - F. = (0 —6) < 0. Hence,
|3Z —2D| =0, i.e, P31[D] = 0. Thus, we obtain the next result.

Proposition 14 If D is rational, k[D] =2 and o > 4, then
P 1[D] =37% + 8 + D

Moreover, if o =5 then P31[D] = 0.
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Note that P35[D] = P3[D] = 3Z%+3 and that if 0 > 6 then 322 +8 > 8.
Next, let ¥ be 2(22 — D), that is nef and big. Hence, H' (S, Os(Ks +
[Y])) =0. However, [Y] =3Z — D and Kg + [Y] =4Z — 2D. Hence,
(4Z — 2D) - (3Z — D)
2

dim H(S, 05(4Z — 2D)) = +1=62%+11+ D>

Thus, we obtain the next result.
Proposition 15 If D is rational, k[D] =2 and o > 4, then
Pys[D] =6Z% + 11 + D2

16 curves with P[D] =2

We shall give a complete list of types of pairs (S, D) such that »[D] =
2,k[D] = 2,9(D) = 0. Hence, suppose that x[D] = 2,¢(D) = 0, P,[D] = 2.
Then by Lemma 12, Z2 = 0; i.e. Kg? —D? =4 and so f =r —4 > 5. Note
that
P = (M7 — (1 —1)D) - (2Z — D) = (6 — Bin + f — 4.
Moreover, from @ > 0, it follows that
Q=47%—-4Z-D+D?*=8—p.

Hence, we have four cases according to the value of g3, i.e. §=105,6,7,8.
However, first we shall consider the case when v = 2.

Proposition 16 If Z? =0 and v; = 2, then B = 12.
Proof: From 22%2 —2(g—1) =222 -Z2Z-D =22y* - Zy-C =13 — 2 , it
follows that

(0 —3)(eB+2f —6) =73 =2+22%>-2(g— 1) = 4.

Hence, 0 — 3 =1, 2.

Ifo =4, thenoB+2f—-4=2+4=6, thus (B, f) = (0,5),(1,3),(2,1).
In each case, go = 12,7 = 12, Ks? = —4, 8 = 12. The type is [4 * 5;2'?] or
its associates.

If o =5, then 5B +2f —4 =2+ 2 =4, thus (B, f) = (0,4). But this is
impossible, for o < f. —

Second, under the hypothesis 11 > 3 we shall examine the following four
cases, # = 5,60,7,8, separately.
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16.1 case =5

Then r = 9 and Ks? = —1 and moreover p,, = v + 1; hence, by Formula
I’ (Lemma 11), v1 + 1= ¢, + 6,,.

Claim 6 p=o0—2v; = 0.
Proof: Otherwise, from 6,, > A+’y > 31 —5, it follows that vy +1 > 31 —5.
Hence, 1y < 3;ie. v1 =3. Thus B=1,0 =211 +1 =7, f = v1 = 3; hence,
go = 6-9 — 21 = 33. Therefore, by genus formula,

to+1t3 =9, 19+ 3t3 = 33.

Thus 2t3 = 33 — 9 = 24 > 18; a contradiction. —
Therefore p = 0 has been established and

vi+1=2C{, +2(1 —2)(f + 1B — 211).

Letting ¢ = f + 11 B — 21y, we get v1 + 1 > 2¢q(v; — 2) and thus

4 1 3
e+l _,

3 < < .
=M =9, 2 —1

Hence, if ¢ > 0 then ¢ = 1,2. Note that v = 2¢(v; — 2)

16.1.1 casey >0
If g =1, then vy, < 5. If ¢ =2, then vy <3.

e ;1 =5. Then 0 = 10, ¢ = 1.

From 1 = f+v1 B —2uvy, it follows that go = 90 and (,, = (5 = 0. Hence,
t3 =t4 = 0. From t9 +t5 = r = 9 and t9 + 10t5 = g9 = 90, it follows that
ty = 0,15 = 9. The type is [10 * 11;5°] or its associates.

e case 1 = 4. Then 0 =8 and ¢ = 1.

From 1 = f 4+ v B — 2vy, it follows that go = 56 and (,, = (4 = 1. Thus
t3 = 1. From t9 +t3+t4 =7 =9, 19+ 3t3+ 64 = gg = 56, it follows that
ty = 9 and t2 = —1; a contradiction.

e case 1 = 3. Then 0 = 6,(,, = (3 = 0,4 = (,; + 2q. Hence, ¢ = 2. From

2 = f 4+ 11 B — 2vy, it follows that ¢ = 6 and g9 = 35. From t9 +t3 =r =
9, to+ 3ts = go = 35, it follows that 2t5 = 26,2 < 0; a contradiction.
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16.1.2 case vy=0

Finally, we consider the case in which ¢ = 0, i.e. v = 0. Then ,, = 0 and
from 6,, = (11 — 2)(B — 20) it follows that B — 20 = 0; hence, 2gg = 71 =
(0 —1)(B -2) =2(c — 1)

Moreover, v1 + 1 = (,,; hence,

vi+1=F()=w—3)z1+2(v; —4)za+3(v1 —d)zs+ - - .

Since v1 + 1 = F(v1) > 2(11 — 4) it follows that 14 < 9.
e case v; = 9 In this case, 0 = 18, gy = 17?2 = 289 and

r+1=10=F(9) =6z + 103+ -
Then z9 = 1,21 = x3 = --- = 0 and since t4 + t; = x9 = 1, it follows that
to+ts+tr4+1tg=9, to+ 6ty + 21t + 36tg = 289.
Therefore,
oty + 20t7 + 35t9 = 280, 14+ 4ty 4+ Ttg = 56, Ttg = 55 — 3ty = 55 or H2.

This is a contradiction.
e case V] = 8
In this case 0 = 16, go = 15? = 225 and

vi+1=9=F(8) =5z + 8x2 + 9x3.
Hence, t5 = 23 = 1,3 = t4 = t7 = t¢ = 0. By genus formula
to+ts +ts = 9,10 + 10t5 + 28ty = 225.

From these, we get t5 4+ 3ts = 23; a contradiction.
ecase v, =17
In this case, 0 = 14, gg = 13 = 169 and

I/1+1=8=F(7)=4:E1+6.’E2.
Hence, t3 4+t = 1 = 2,14 =15 = 0 and so
to+t3+ts+1t7 =9, to+ 3t3+ 1dtg + 21¢7 = 169.

From these, it follows that 2t3 + 14t + 20t7 = 160; t3 + Tt + 10¢7 = 80. Thus
6t + 10t7 = 80 — 2 = 78; 3t + 5ty = 39, a contradiction.
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ecase v =6
In this case 0 = 12, go = 11?> = 121 and

vi+1=7=F(6) =3z + 4.
Hence, t3+t5 =21 =1,t4 =29 =1 and
totty+tstts+te=9, to+tc="7, to+3ts+6ty+ 10t5+ 15t5 = 121.
From these, it follows that
T+ 3+ 6+ Tty + 14tg = 121, Tt5+ 1dtg = 121 — 16 = 105, t5 + 2t = 15.

Hence, to = t3 = 0,t, = t5 = 1,16 = 7. Thus the type is [12 * 12;67,5,4] or
its associates.
ecase /] = H

In this case 0 = 10, go = 9% = 81 and

vi+1=6=F(5)=2x.
Hence, t3 4+ t4 = 1 = 3. Thus
t3+1ts+to+1t5 =9,3t3 + 64 + t2 + 10t5 = 81,

94 3t4+ 6 + 95 = 81,34 + 95 = 81 — 15 = 66,14 + 315 = 22.

Since t4 < 3 and 5 < 6, it follows that ¢4 + 3¢5 < 21; a contradiction.
ecase vy =4
In this case o = 8, gy = 7% = 49 and

V1+1=5=F(4)=LB1.

Hence, t3 = 21 = 5,19 + t4 = 4. Thus
3t3+6t4+1to = 49,154+445t4 = 49;5t4 = 30,14 = 6 > 4; a contradiction.
ecase v =3
In this case 0 = 6,90 = 5> =25 and ty +t3 =9, to+3t3 =25, 2t3=
16. Thus
to =1, t3=238.

Then D? =72 — 4 — 8- 9 = —4, a contradiction.
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16.2 case =6
Then r = 10, Kg? = —2 and so p,, = 6v, —4—6(1, — 1) = 2. By Lemma 11
2= CVI + 91/1'

By v1 > 3, we get 3v; —5 > 4. Hence, if p > 0 then by Corollary, 2 = p,, >
A+ v > 3v; — b > 4, contradiction. Therefore, if 6,, > 0, then 0 = 2, and
2=0,, =v=2(w1-2)(f+v1B—2v;). Hence, vy = 3 and f+1v1B—-21; = 1.
Thus B=0,f =7,0 =6,99 = 30. From

to + t3 = 10,19 + 3t3 = 30,

it follows that ty = 0,t3 = 10. The type is [6 * 7; 3'9] or its associates.
If 6, =0, then 0 =21y and f + 11 B — 211, = 0. Hence, 2 = (,,.

G, =2=F(n)=w1 —3)z1+2(11 —4)za +--- .

Then from 2 = F(v1) > v1 — 3, it follows that 14 < 5.
ecase 1 = 5,21 = 1. Then 0 = f =10,90 = 81,t3 +t4 = x1 =1 and so

to +t5 +ts+t4 =10, to+ 10t5 + 3t3 + 614 = 81.
Hence,
94+ 9ts + 3+ 3ty = 81,9t5 + 3t4 = 81 — 12 = 69, 35 + t4 = 23.

Since t4 = 0, 1, there exist no solutions.
e case v; = 4,21 = 2. Then 0 = 8,t3 = 2. Hence, g9 = 49. By genus
formula,

to+t3+t4 =10, to + 3t3 + 614 = 49.

Hence,
35ty =35, t4 =7, tg=1.

The type is [8 * 8;47, 32, 2] or its associates.

16.3 case f=7

Then r = 11./[(52 = —3 and so py,, = 3 — ;1. Hence, v; = 3. Then o =
6,0,, =0 and so (,, =6, =0. Then 3B + f =6, go = 25 and

to+t3 =11, 1o+ 3t3 = go = 25.

There exists a solution to the effect that to = 4,13 = 7 and so the type is
[6 % 6;37,2%] or its associates.
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16.4 case =38
Then r = 12, Kg? = —4 and so v; = 2. In this case, the type is [4 * 5;2'?]
or its associates.

Theorem 10 Suppose that g = 0 and Po[D] = 2. Then Z? =0 and

1. if D? = —5 then the type is either [12 % 12;67,5,4] or [10 x 11;5%] or
their associates.

2. If D> = —6 then the type is [6 x 7;3'0] or [8 x 8;47,32,2] or their
associates.

3. If D? = —7 then the type is [6 % 6;37,2%] or its associates.

4. If D? = —8 then the type is [4 x 5;2'2] or its associates.

16.5 curves parametrized by polynomials

Remark 3 Rational curves C defined by parametrized x = f(t) = t" +
at" Pt an,y =gt) =t bt by, (R > m > 4,0 > 6)
where the a; and the by are general, have 0 = m and Kodaira dimension 2,

except for (n,m) = (6,5),(7,4),(6,4), (8,4).

The invariant D? is given by the following formula:
(1) n=m—12>6. Then

n? —9n + 16

D?*=—-n?4+6n-4, Z%= 5

(2) n=mqy+ 10,0 < 1rog <m,2rg < m Then

D?* = —(n—2)(m —2) + 26(n,m) + ¢*(n, m),
Z? = R(m,ro) + 2(n — 2)(m — 2) — 26(n,m).

(8) n=mqy+10,0 <rog<m,m=rg+ry,r <ro. Then

D? = —(n —2)(m — 2) + 26(n,m) + ¢*(m,r1).

*Note that the similar result was obtained by S.Usuda, independently.
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17 rational curves with () = 1,2

While 0 > 4, @ = (2Z — D)? > 0 has been established and so we shall
investigate the type of pairs with small Q. By Proposition 11, if Q = 0
then ¢ = 4 and vice versa. By definition, 422 + 8 + D? = ). Hence,
Q-8+ B=4Z%>0; thus f > 8 — Q.

e When vy > 3, we get (3Z —2D) - (2Z — D) > 0. Hence,
(3Z —2D) - (22 — D) =3(Q + B — 8) + 28 — 48 > 0,
and so
3Q—-B+4>0.

Hence, 3Q +4 > 5.
Suppose that @ = 1. Then 8 = 7 and Z? = 0. By Theorem 10, the type
turns out to be [6 * 6;37,24].

e When v < 2, we obtain
1=Q=(2Z—-D)?=(0—4)(Bo+2f —8).

From this, it follows that o =5, f = 7, go = 14 and the type is [5 * 7, 1; 2]
, where D? = —11,r = 14, K? = —6,Z° = -6+ 11 —4 = 1.

Suppose that Q@ =2. If 1 > 3, then3-2—-3+4 > 0,andso 10— > 0.
But from 422 +8 — 8 = 2, it follows that 8 = 4Z?+6 = 6 or 10. So if 3 = 6,
then Z2? = 0. By Theorem 10, the type becomes [6* 7;3'°] or [8 % 8;47, 32, 2]
or their associates.

If =10,then 2?2 =1 =K?-D?-4=K?+10-4,K? = —5and r = 13.
Moreover, {g =12—-13 = -1,a=—-4+10=6,& = 0+f+% — (& —-1)p.
It is not diflicult to see that p =0 and = 0. Thus

Therefore, 1y = 3 and so 0 = 6,99 = 25,19 + t3 = 13,12 + 3t3 = 25.
From this 5 = 7,3 = 6. The type is [6 * 6;3%,27] or its associates , where
r=13,D>=72-54—-28=-10,2>=8—-13+10 -4 =1.

When vy < 2, we obtain 2 = @ = (0 —4)(Bo +2f —8). Hence, it follows
that o =5, f = 5,go = 16 and the type is [5x 5; 2'6] or [5x10,2;2!6] | where
r=16,D?> =50 —64=—14,2> =8 - 16+ 14 — 4 = 2.

Combining Proposition 10 with the above argument, we establish the
following result.
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Theorem 11 Assume that Q = 1. Then

~

the type is [6 * 6;37,2°] , where ¢ < 4 or
the type is [5* 7,1;2"] or

the type is [7; 1] or their associates, or
the type is [5;1] or

the type is [3 % 5,1;1].

Assume that Q = 2. Then

1.

2.

6.

7.

the type is [8 x 8;47, 32, 25'] , where ¢’ < 1 or their associates or
the type is [6 x 7; 319 or their associates, or

the type is [6 x 6;2°,3%] where g = 7 — ¢ and D? = 4g — 10 or their
associates, or

the type is [5 % 5;2"],

the type is [5 % 10,2;2"] where g = 16 — r and D? = 50 — 4r = 4g — 14
or

the type is [5 % 5;2"] or [5 % 10,2;2"] or their associates or

the type is [3 * 3;1].

Suppose that Z? =1 and g(D) = 0. Then Q =4Z% +8 + D? =12 — B.
Hence, the next result follows immediately.

Corollary 6 Suppose that Z%> =1 and g(D) = 0.
If B= —D? =11 then Q = 1 and thus the type is [5 x 7,1;2'4].
If B =10 then Q = 2 and thus the type is [6%6; 3% 27] or their associates.

18

inequalities between Z? and D?

For rational curves D, the following inequalities hold between Z2 and D?.
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Proposition 17 Suppose that g =0 and k[D] =2. If v; <2 and K[D] =2
then

ZQ_—(a—3)DQ+—02+5a—8
- 2(0—2) o—2
—(0—3) —0% + 70 — 12
PD =72 49— 2 =3 2 :
21D LT P R B —
_D2 _D2
In particular, if o = 4 then Z? = —2,P[D]=27Z%+2= )
-D? -8 -D? -2
If o =5 then Z2 = —5— D = ——.

Now we introduce the following regions
Ur=A{(z,y) |4y >z — 8,3y < z — 8}

that is called vacant region I.
Define R(B,%%) = {(B,2?) | for pairs (S, D)with rational D}. Then

from the previous result, we obtain

R(B,Z5)nU; = 0.

18.1 curves parametrized by polynomials

Remark 4 Rational curves C defined by parametrized x = f(t) = t" +
art™ N 4t an,y = gt) =t bt™ 4 by, (> m > 4, > 6)
where the a; and the by are general, have 0 = m and Kodaira dimension 2,
except for (n,m) = (6,5),(7,4),(6,4), (8,4).

The invariant D? is given by the following formula:
(1) n=m—12>6. Then

n? —9n + 16

D’=—-n?+6n—-4, Z?= 5

(2) n=mqy+ 10,0 < 1rog <m,2rg < m Then
D2 = _(n_2)(m_2)+25(nam)+q*(nam)a

Z? = R(m,ro) + 2(n — 2)(m — 2) — 28(n, m).
(8) n=mqy+10,0 <19 <m,m=rq+r1,m1 <r9. Then

D? = —(n —2)(m — 2) + 26(n,m) + ¢*(m,r1).
3

®Note that the similar result was obtained by S.Usuda, independently.
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-D? | 22| n|lm | -D*|Z%| n|m
41 -1 6| 4 20 41 81| 6
4| -1 7| 4 20 41 8| 7
41 -1 8| 4 20 4111 5
41 -1 6] 5 22 5[ 9| 6
8 0| 91 4 24 4117 4

11 1 7] 5 26 612 5
11 1{ 7] 6 28 5118 | 4
12 1(10]| 4 28 5(19| 4
12 1111 4 28 5120 4
12 112 4 28 7110 | 6
14 21 8| 5 28 7111 | 6
14 21 9| 5 28 7112 | 6
14 2110 5 29 7113 5
16 2113 | 4 29 7114 ] 5
20 3114 4 29 7115 5
20 3|15 4 31 8 9 7
20 3116 4 31 81 9| 8

Table 1:

data of polynomial curves
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18.2 curves parametrized by torus polynomials ()

1
Here elements of k[t, ;] are said to be torus polynomials.
Let us consider rational curves C' parametrized by torus polynomials

1 1
p=fl)=1"Fa "+ dagtaag ot an

1 1
y = g(t) =t’”+b,1t’”_1+~~-+bg+b,1¥+~--+b,mﬁ,

where the a; and the by are general. Under the assumption n > m > 2 have
o = 2m and Kodaira dimension 2, except for (n, m) = (6,5), (7,4),(6,4), (8,4).

19 curves with P[D] =3

Next, the complete list of types of pairs (S, D) such that »[D] = 3 will
be given. (The same result was obtained by S.Usuda independently at the
same time.)

If K[D] = 2,9(D) = 0,P[D] = 3, i.e., Z? = 1, then K¢ — D? = 5 and
so f =r—3. But since8—r=K§§ -1, weget f=r—3>9—-3=6.
Furthermore, by definition

pv, = (N Z—(11—1)D)-(2Z—-D) = 8v1—4—(v1—1)8 = (8—p)vi+(v1—1)p—4.
First, we treat the case of curves with only double points.

Proposition 18 If g = 0,11 = 2, Z% = 1 then the type is 1) [4 * 6;2'%] or
its associates, where D? = —12, or 2) [5 % 7,1;21] | where D? = —11.

Proof: From 6 = (0 — 3)(Bo +2f — 6), we have two cases 1) 0 —3 = 1 and
2) o —3=2.

case 1) 0 —3 =1. Then Bo +2f —6 = 6 and so 3B + f = 6. The type
is [4 * 6;2'°] or its associates.

case 2) 0 —3 =2. Then Bo+2f —6 = 3 and so 5B +2f = 9. Therefore,
B =1, f =2 and the type is [5* 7, 1;2!]. —

Second, we treat the case of curves with 11 = 3.
Proposition 19 If g = 0,11 = 3,Z% =1 then

75 = (0 = b)(Bo + 2f — 10) = 2(14 — r).
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Proof: Here, we shall prove the following formula:
If iy =3,K?=8 —r and f = —D?, then

75 = 10(g +4) + 48 — 6.
In order to verify this, first consult genus formula and compute D?:
to + t3 = 1,19 + 3tz = go — g, 4ta + 9tz = C% + 6.

Then
23 =go— g — 1,5tz = C? +  — 4r,

and thus
5(go —g — 1) =2(C° + B — 4r).

Since 299 — 2 = Zy - C, it follows that
5Zy - C + 10 — 4C? = 109 + 48 — 61,
and by Formula I(Lemma 3)

75:(520—40)-C+50:10(g+4)+4ﬁ—67".

Remark 5 Replacing 8 by Z% +r — 4g — 4, we obtain

s =24+ 4Z* — 6g — 2r.

Claim 7 g¢ < 3r, provided that vy = 3 and g = 0.
Proof: The genus formula implies that

to+t3=r, t2+ 3t3 = go.
Then gy — r = 2t3 < 2r. Hence, gg < 3r.

The next result is easily verified.

Claim 8
Bo+2f—-10>0-5.
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Since t3 > 0, it follows that ¢ > 6 and hence, r < 14. But r = +3 > 9.
Thus we have the following five cases:

(1) » = 13. Then 75 = (0 — 5)(Bo + 2f —10) = 2. Hence, 0 — 5 =
1,Bo+2f — 10 = 2. Thus ¢ = 6 and 3B + f = 6, which implies g9 = 25.
By genus formula

to+t3 =13, to + 3t3 = 25.

Hence, 2t3 = 12;t3 = 6,ty = 7. The type is [6 * 6;3%,27] or its associates.

(2) r =12. Then 75 = (0 — 5)(Bo + 2f —10) = 4. Hence, a) 0 — 5 =
1,Bo+2f —10=4;0rb) c —5=2,Bo+2f —10 =2.
In the case (2.a), we get 0 = 6 and 38 + f = 7, which implies gy = 30.
By genus formula
to+1t3 =12, 1o+ 3t3 = 30.

Hence, 2t3 = 18;t3 = 9,5 = 3. The type is [6 * 7;3%,2%] or its associates.
In the case (2.b), we get 0 =7 and 7B + 2f = 12, a contradiction.

(3) r =11. Then 75 = (0 — 5)(Bo + 2f —10) = 6. Hence, a) 0 — 5 =
1,Bo+2f —10=6;0orb) c —5=2,Bo+2f — 10 = 3.

In the case (3.a), we get 0 =6 and 3B+ f =8

, which implies go = 35. By genus formula

to+t3 =11, to + 3t3 = 35.

Hence, 2t3 = 24;¢3 = 12; a contradiction.
In the case (3.b), we get 0 = 7 and 7B + 2f = 13 , which implies

?

B =1, f=3,90=33. By genus formula
to+1t3 =11, o+ 3t3 = 33.
Hence, 2t3 = 22;t3 = 11,9 = 0. The type is [7 % 10, 1; 3'1].

(4) 7 = 10. Then gy < 3r = 30 and moreover, 75 = (0 — 5)(Bo + 2f —
10) = 8. Hence, a) 0—5=1,Bo+2f—10=8;0orb) 0—5 =2, Bo+2f—10 =
4,

In the case (4.a), we get 0 = 6 and 3B + f =9 , which implies gy = 40;
a contradiction.

In the case (4.b), we get 0 = 7 and TB+2f = 14 , which implies gy = 36;
a contradiction.
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(5) 7 =9. Then go < 3r = 27 and moreover, 75 = (6 —5)(Bo+2f—10) =
10. Hence, a) 0 =5 =1,Bo+2f—10=10;0orb) 0 =5 =2, Bo+2f —10 = 5.

In the case (5.a), we get 0 = 6 and 3B + f = 10 , which implies go = 45,
a contradiction.

In the case (5.b), we get 0 = 7 and 7B + 2f = 15, which implies B =
1, f = 4. Hence, gg = 18 + 21 = 39; a contradiction.

Thus the following result has been established.

Proposition 20 Suppose that ¢ = 0,1y = 3 and Z? = 1. Then r =
11,12,13 and

1. if r = 13 then the type is [6 * 6;3%,27] or its associates.
2. If r = 12 then the type is [6 * 7;3°,23] or its associates.

3. If r = 11 then the type is [7 % 10, 1; 3],

Owing to the previous result, we may suppose that v; > 4.
Letting w be (2Z — D)? > 0, we get

w=(2Z-D)?=42*-4Z-D+D*=12-p.

Since in the cases w = 0,1,2, all types have been already enumerated in
Proposition 10, we may assume w > 3. Thus we have the following four
cases to examine, separately:

19.1 case =6
Then p,, = 2v1 + 2; hence, by Lemma 11,
21 +2 = Cyl + 91,1.
First assume that 6,, = 0.
Then o = 21 and f + Bry — 24 = 0 which implies that go = (211 —
D(f —1)+ Bri(2vr1 — 1) = (2v1 — 1)2.
2v1 +2 = F(Vl) = (1/1 — 3).’E1 + 2(1/1 — 4).’E2 + 3(1/1 — 5).’E3 + -

To find the maximal vy, we suppose that 2vy +2 > 3(v; —5). Then vy > 17.
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e case v; = 17. From hypothesis, 3 = 1 and z; = 0 if j # 3. Therefore,
o = 34 and go = 332 = 1089, and moreover,

1l =ax3 =15+ t1a,to +t17 +t5 + 114 = 9,10 + 136t17 + 10t5 + 91414 = 9,

135t17 + 9t5 + 90¢14 = 1080.

Therefore,
135t17 + 81t14 = 1080 — 9 = 1071.

There exist no solutions.

While 14 < 16, we get 214 +2 > (11 — 3) + 2(v1 — 4), which implies
%1 Z 13.

e case 1 = 13. From
28 = F(13) = 10x1 + 18x9 + 24x3 + 28z4.

Then we get two solutions 1) 21 = 22 = 1,2; = 0 and 2) z; = 29 = 23 =
0,24 = 1. Therefore, since o = 26,99 = 25° = 625, it follows that in the
case 1)

1=z =13+ t12 =32 =4 + t11,

ty+tiz+t3+tio+ta+ty =9, to+ 7813+ 3t +66t19 + 614+ 55, = 625,
TTt13 + 2t3 + 65t19 + 5tq + 54ty = 616,
TTty3 + 2 + 63ty + 5 + 49t = 616,
TTt13 + 6312 + 4911 = 609.
11t13 + 910 + Tty = 87.

The equations have no solutions.
In the case 2),

l=x4=tg+1tg, to+ts+tg+ti3=9, 1o+ 78135+ 15tg+ 36t9 = 625.

Hence,
TTt13 + 14tg + 35tg = 616, 11t13 + 26 + Stg = 88.

Thus,
11t13 4+ 3tg = 86; 19 = —1.

The equations have no solutions.
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e case v = 12. Then
26 = F(12) =921 + 1629 + 2123 + 2434 + 2525 + - - - .

The equation has no solutions.
ecase vy = 11. Theno =22, f = 2v;—Br; = 22—118 and gy = 21? = 441.
The equation

24 = F(ll) = 8x1 + 14x9 + 18x3 + 20x4
has a solution z; = 3,292 = 23 = x4 = 0. Hence, t3 + t10 = z1 = 3 and so
to+t3+tio+t11 =9, to+ 3tz + 4dt1g + DOt = 441,

2t3 + 44119 + 54t = 6 + 42t + 54t = 432.

Thus,
42t19 + 54t11 = 426,

and so
Ttio + 9t = 71.

But the equation has no solutions.

e case v; = 10. Then o = 20, f = 2, —Br; = 20—108 and gy = 19?2 = 361.
The equation

22 = F(10) = Tz + 1229 + 1523 + 1634

has a solution z; = 1,29 = 24 = 0,23 = 1. Hence, t3 +t9 =15+ t; =1 and
SO

to+ts+tg=ts5+tr+1t10=9, 19+ 3t3+ 36t9+ 10t5 + 21t7 + 45t19 = 361,

2t3 + 35tg + 9t5 + 20t7 + 44t = 352.

Thus,
2+ 33ty + 9 + 11t7 + 44t = 352,
and so
33tg + 11t7 + 4419 = 341.
Hence,

3tg + t7 + 4t19 = 31.

The equation has a solution tg = 1,17 = 0,%10 = 7,t5 = 1. The type is
[20 * 20; 107, 9, 5] or its associates.
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ecase vy =9. Then o =18, f =21 — Bvy =18 — 9B and gg = 17? = 289.
The equation
20 = F'(9) = 6x1 + 10z9 + 1223

has a solution 9 = 2,1 = 23 = 0 and hence,
ta+1t7 =2, tot+tg+ts+t; =9, 1o+ 36tg+ 614+ 21¢; = 289,

35tg + 5ty + 20ty = 280, 35tg + 15t7 = 270.
Hence, 7tg + 3t7 = 54, and then t9 = 6,17 = 4; a contradiction.

ecase vy =8. Then o =16, f =2v; — Bry = 16 — 83 and gy = 15% = 225.
The equation
18 = F(8) = bz1 + 8z + 93

has two solutions 1) z3 = 2, and 2) 27 = 2,29 = 1.
In case 1), t5 = x3 = 2 and

to+ts+1t5 =9, to+ 28tg + 10t5 = 225.

Hence,
2Ttg + 9t5 = 216;  3ts + t5 = 24.

Then 3tg = 24 — 2 = 22, a contradiction.

In case 2), t3 +t7 = 2,t4 + ts = 1 and so
to+itg+tg+tr+ta+ts=09, to—+ 28ts+ 3ts+ 21ty + 6ty + 15t = 225.
Hence,

27tg + 2t3 + 20t7 + bty + 14t = 216  27ts + 4 + 18ty + 5 + 9t = 216.

Then 27tg + 18t7 + 9tg = 207; hence, 3tg + 2t7 + tg = 23. There exists one
solution tg = 6,¢7 = 2,%6 = 1. The type is [16 * 16; 85, 72, 6] or its associates.

ecase vy =7. Theno =14, f =2v; — By = 14— 78 and gy = 13% = 169.
The equation
16 = F(7) = 4z1 + 622

has two solutions : 1) 1 =4 and 2) 21 = 1,29 = 2.
In case 1), t3 +t¢ = z; =4 and

to+tr+t3+1t6 =9, to+ 21ty + 3t3 + 15t = 169.
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Hence, 20t7 + 2t5 4+ 1415 = 160.
20t7 + 12t = 152;  5t7 + 3tg = 38.
Then t7; = 7,16 = 1,13 = 3; a contradiction.
In case 2), t3 +t6 =21 = 1,84 + t5 = z2 = 2 and
to+tr+it3+ts+ta+1ts =9, to+21t; + 3t3 + 15t + 64 + 10t5 = 169.

Hence, 207 + 2t3 + 14tg + 5t4 + 9t5 = 160, 20¢7 + 2 + 12t + 10 + 4i5 = 160
and so 20t7 4+ 12tg + 4t5 = 148; thus 5t7 + 3tg + t5 = 37. There exists no
solution.

ecase vy =6. Theno =12, f =2v; — By = 12— 63 and gy = 112 = 121.
The equation
14 = F(6) = 321 + 422

has one solution z1 = 29 = 2 and hence t3+t5 = 21 = 2,14 = 9 = 2 and so
to+te+t3+15+14=9, t2+ 15t + 3t3 + 10t5 + 614 = 121.
Hence,
14tg + 2ts + 9t5 + 5ty = 112,  14tg + 4+ Tt5 + 10 = 112.

Therefore, 2tg + t5 = 14; hence, tg = 7,5 = 0,t3 + 15 = 2,14 = 2,13 = 2,7 >
9; a contradiction.

ecase v = 5. Then o =10,f =21, — Br; =10 — 5B and gy = 81. The
equation 12 = F(5) = 2z, has a solution 7 = 6 and so t3 + t4 = z1 = 6.
Hence,

to+t5+13+14=9; to+ 10t5 + 3t3 + 614 = 81.

Therefore,
to+ts=3; 3+9t5+3-6+4 3ty = 81.

Hence, 9t5 + 3t4 = 60;3t5 + 14 = 20. But 3t5 +t4 < 946 = 15 < 20; a
contradiction.

e case 1) = 4. If v =4 then 10 = F(4) = x1 = t3 > 9; a contradiction.
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19.1.1 case p > 0.

Second, assume that p = 6 —21; > 0. Then A = (p+3v1—2)B+2f -2 —4
and assume 7 > 4.

We shall study in the following cases : 1) B =0,2) B=1,3) B > 2
separately.

case 1) B=0. Then A =2f — 2 —4,f =oc4+u=p+ 2w +u,y =
2(v1 —2)(u+p), , where p > 0,u > 0.

From

21 +2=(+(2p+2u+2v1 —4)p+2(1 —2)(u +p),
it follows that
¢ =2(1—u—2p)v + 8p+ 4du — 4p* — dpu + 2.
By v1 > 4,
¢ < 8(1—u—2p)v +8p +4du — 4p* — dpu + 2 = 10 — 8p — 2p* — 2pu — 4u.
Hence, p = 1,u = 0,{ = 0,1 = 4; thus 0 = 9,99 = 64,t3 = 0. By genus

formula,
to+t3+ts =9, 19+ 3t3+ 614 = 64.

Thus 5t4 = 55,t4 = 11; a contradiction.

case 2) B = 1. Thenﬂ=p+31/1—2+2u—4=p+31/1+2u—6,f=
vi +u,y = 2(v; — 2)u, where p > 0,u > 0. Thus

Coy =(2—3p—2u)vy +2+4u+ (6 — p — 2u)p.
Byyl 247
0<¢, <8—-12p—8u+2+4u+ (6 —p—2u)p=10—6p — 4u — (p + 2u)p.

Therefore, p = 1,u = 0.
Hence, (,, =7 — 1. Recalling the definition of (,,, we obtain

Cyl:7—1/1:F(V1):(V1—3)$1+..._

oIf(,, =0thenv; =7,t3=--- =16 =0 and so 0 = 15, f = 7. Therefore,
go=14-6+7-15 =189. By genus formula,

to+t7; =9, 1o+ 2117 = 189.
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From this, it follows that to = 0,7 = 9. Hence, the type is [15 % 22, 1; 7%].

e If (,, >0 then 7—wv; = F(v1) > (v1 — 3). Hence, v; < 5. Thus here are
two cases:

case (1) v; =5. Theno =11, f = 5,99 = 95. Since 7T—v; =2 = F(5) =
2z, it follows that z1 = t3 + t4 = 1. By genus formula

to+1ts+1t3+ta =9, to+ 10t5 + 3t3 + 64 = 95.

This yields t4 4+ 3t5 = 28 and so t5 = 9,t4 = 1,7 > 10; a contradiction.
case (2) vy =4. Theno =9,f =4,90 =60. Since 7 — v, =3 = F(4) =
x1, it follows that 21 = t3 = 3. By genus formula

to+t3+1t4 =9, t9+ 33+ 614 = 60.

Hence, 2t3 + 5t4 = 51;5t4 = 45,t4 = 9,7 > 9+ 3 = 12, which is a contradic-
tion.

case 3) B > 2. Then we can derive a contradiction by the same argument
as before.

19.1.2 case p=0.
Third, assume that o = 2v;. Then v = 2(v; — 2)(f + 1B — 21v1) > 0.

We shall study in the following cases : 1) B =0,2) B=1,3) B > 2,
separately.

case 1) B=0: f=0+u=2v; +uand v = 2(v; —2)u > 0. Hence,
2v1 +2=(+2(v1 — 2)u, ie, ( =2(1 —u)v; + 2 + 4u.

In the case when u = 1, we get ( = 6. Thus 6 = F'(11) > 11 — 3. Hence,
1 < 9. We shall examine the following 7 cases separately.

e case ] = 9.
Then 6 = F(9) = (9—3)z; and so t3+tg = 1 = 1. Further, 0 =18, f =
19,90 = 17 - 18 = 306. By genus formula,
ts +tg+to+1t9g =19, 3it3+ 28t + to + 3619 = 306,

2t3 + 27tg + 35t9 = 297, 2btg + 35t9 = 295.

Hence, 5tg + 7tg = 59; a contradiction.

e case v] = 8.
Then 6 = F(8) = 5x1 + 8x2 + 9x3 + - - -, which has no solutions.
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ecase v = T.

Then 6 = F(7) = 4x1+6x2, which has a solution t3+tg = z1 = 0, t4+t5 =
Tr9 = 1.

Further, 0 = 14, f = 15,99 = 13 - 14 = 182. By genus formula,

ta+its+to+1t7 =9, 6ty + 10t5 + to + 217 = 182,
5t4 + 95 + 20t7 = 173, 4t5 + 20t = 173 — 5 = 168.

Hence, t5 + 5t7 = 42; a contradiction.

e case V] = 6.

Then 6 = F(7) = 3z1 + 4z2, which has a solution t3 +t5 = 21 = 2,t4 =
x9 = 0.

Further, 0 = 12, f = 13,99 = 11 - 12 = 132. By genus formula,

ts+ts+to+tg =9, 3t3+ 10t5 + to + 15t = 132,
2t3 + 95 + 14t = 123, Tts + 14tg = 119,

Hence, t5 + 2t = 17; a contradiction.
[ ]

case V] = 5.

Then 6 = F(5) = 2z1, which has a solution t3 + ¢4 = ;1 = 3. Further,
oc=10,f=11,90 =9 -10 = 90. By genus formula,

t3+tys+ty+1t5 =9, 3t3+ 6ty +ty+ 10t5 = 90,
2t3 + 5tg + 9ts = 81, 3ty + 9t5 = T5.

Hence, t4 + 3t5 = 25, ; a contradiction.

e case v] = 4.
Then 6 = F(4) = x;, which has a solution t3 = z; = 6. Further, 0 =
8,f=9,90 =78 =056. By genus formula,

ts+to+1t4 =9, to+1ts=3, 3t3+ts+ 6t4 = 6.
Hence, 2t3 + 5t4 = 47, b5ty =47 —12 =35, t4 =7 ; a contradiction.

In the case when v =2, ( = 10 — 2v4. Thus 10 — 2v; = F(vy) > v — 3.
Hence, v1 < 4 and sov; = 4. Therefore, 2 = F(4) = 27 = t3. Further,
c=8,f=10,90=7-9=63.
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By genus formula,
ts+to+1t4 =9, to+t4=7, 3t3+12+ 64 =063.
2t3 + 5ty = 54, bty =54 —4 =50, t4 =S8, a contradiction.
In the case when v =3, 211 + 2 = ( = 14 — 41;. Hence, v; = 2.
case 2) B =1 f=v; +wuand y=2(v; —2)u > 0. Hence, 2v; +2 =
C+2(v1 —2)u, ie., ( =2(1 —u)v; + 2 + 4u.
case 3) B > 2: f =wand v =2(1y —2)(f + 1B — 211) > 0. When

B=221n+2=(+2( —2)u,ie, (=2(1—u)r +2+4u.
In both cases, we are able to derive contradictions.

19.2 case f=7
Then p,, = v1 + 3; Hence, by Lemma 11,

I/1+3:CV1+9V1.

First assume that 6,, = 0.
Then ¢ = 2v; and f + Bv; — 217 = 0.

V1+3=F(V1) = (1/1 —3).’E1+2(V1 —4).’E2+3(1/1 —5).’E3+--- .
To find the maximal 14, we suppose that 14 +3 > 2x9(1y —4). Then 14 > 11.

e case v; = 11. From hypothesis, o = 1 and z; = 0 if j # 2. Therefore,
since o = 22, go = 212 = 441,

1 =129 =14+ 19,14 + 19+ to + t11 = 10, 6t4 + 3619 + t5 + 55t = 441.
5t4 + 3btg + 5411 = 431;5 + 30tg + 54t = 431.

Therefore, 30tg + 54t11 = 426, 5tg + 9t17 = 71. There exist no solutions.

e case v = 10.
13 = F(10) = Tz1 + 12x9.

There exist no solutions.

e case 1 = 9 Then o = 18, gy = 17% = 289.

12 = F(g) = 6.’E1 + 10.’E2 + 12.’E3.
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There exist two solutions (1) t3 +tg = z1 = 2 and (2) t5 + t¢ = z3 = 1.
In case (1),

ts +ts = 2,13 + g + to + 19 = 10, 3t5 + 28tg + to + 3619 = 289.

Hence, 2t3 + 27tg + 3btg = 279; btg + Ttg = 55, a contradiction.
In case (2),

ts +tg = 1,15 + 16 + to + t9g = 10, 10t5 + 15t + to + 3619 = 289.

Hence, ; ts + 7Ttg = 54, a contradiction.

e case 1] = 8.
11 = F(8) = bz + 8z9 + 9z3.

There exist no solutions.
e case vy =7 Then o = 14, gg = 13 = 169 and hence we get
10 = F(7) = 4z + 6x2.
Then 21 = z9 = 1. Hence, t3 + t¢ = 21 = t4 + t5 = 9 = 1. Thus
t3+te+ts+1t5+t2+17 =10, 3t3+ 15te + 6t4 + 10t5 + to + 2187 = 169.

Hence, 2t3 + 14tg + 5t4 + 9t5 + 20t7 = 159, 125 + 45 + 20t7; = 152.
Therefore, 3tg + t5 + bty = 38. Then tg = 1,5 = 0,t7 = 7 and the type
is [14 * 14;77,6, 4, 2].

e case v1 = 6 Then o =12, go = 112 = 121 and hence we get
9 =F(6) = 3z1 + 4xa.
Then z; = 3. Hence, t3 + t5 = 1 = 3. Thus
ts + b5 + to + tg = 10,  3t3 + 10t5 + to + 15t = 121.

Hence, 2t3 + 9t5 + 14t6 = 111, 2+ 7t5 + 14t6 = 111;t5 + 2t6 = 15.

Therefore, we have two cases (1) t5 = 1,6 = 7 and (2) t5 = 3,46 = 6. In
case (1), the type is [12 x 12; 67,5, 3%] or its associates and in case (2), the
type is [12 % 12;6° 5% 2] or its associates.
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e case v1 = 5 Then o = 10, gy = 92 = 81 and hence we get
8 = F(5) = 2z.
Then 1 = 4. Hence, t3 + t4 = z1 = 4. Thus
t3+t4+t2+15 =10, 3t3 + 6t4 + t2 + 10t5 = 81.
Hence,
2t3 + 5tg + 9ts = 71;3t4 + 9t5 = 71 — 8 = 63.

Therefore, t4 + 3t5 = 21; Hence, t5 = 6,t4 = 3,t3 = 1 and the type is
[10 * 10; 5%, 43, 3] or its associates.

e case v; =4 Then o =8, gy = 7% = 49 and hence we get
7T=F(3) =ts.

Thus
tg + 12 +t4 =10, 33+ t9 + 614 = 49.

Therefore, to + t4 = 3,21 + 3 + 5t4 = 49; 5t4 = 25;t4 = 5; a contradiction.

19.2.1 case 6, >0

Next assume that 6,, > 0,p > 0.
Then v1 +3 = ( 4+ 0 > 3v1 — 5; hence, v; < 4.
Whenvy =4, 8B =1,0 =9; hence, ( =0, f = 4. Thus gg = 8-3+36 = 60.
Therefore,
to+1t4 =10, 1o+ 614 = 60.

Hence, 5t4 = 50 and so t4 = 10,t2 = 0. The type is [9 x 13, 1; 419].

Finally, assume that 6,, > 0,p = 0. Then A=0and vy +3=C+ 0,,.0,, =
v=2(1 - 2)(f + 1B —2v1) > 0.

We shall study in the following cases: 1) B =0,2) B =1and 3) B > 2,
separately.

case 1) B=0: f=0+4+u=2v1+u,y=2(11 —2)(f —2v1) = 2(v1 — 2)u.

case 2) B=1: f=vi+u,y=2(1 —2)(f —v1) =2(v1 — 2)u.

case 3) B=2: f=u,y=2(v1 —2)f =2(v1 — 2)u.

In any cases, v1 +3 = +6,, > 2(v1 —2)u and thus 3+ 4u > (2u — 1)v;.

If wu=1 then 1y <7.
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ecase v =7 Then o = 14,90 = 13-14 = 182. ( =1 +3 -0, =
vi +3—2(w1 —2) =7—1v; =0. Hence, t3 = t4 = t5 = tg = 0. By genus
formula,
to +t7 =10, 1o+ 21ty =182, 20t; = 172.

ecase /1 = 6

(=v+3—-0,=v1+3-21—2)=T—11=1.
1=(=3x1+ -, a contradiction.
ecase 1 =5 Then o0 =10,99 =9 -10 = 90 and hence we get

(=v+3—0,=v1+3-2nh—2)=T—11=2.
2=(=2zx1+---. Hence, t3+t4 =z = 1.

t3+ 14+t +15 =10, 3tz + 64 + t2 + 105 = 90,

2t3 + bta + 9t5 = 80; 2 4 34 + 9t5 = 80.

Therefore, t4 + 3t5 = 26; hence, 4, = 2,15 = 8,13 = —1; a contradiction.
e case 1 =4 Then o0 = 8,99 = 7-8 = 56 and hence we get

(=v1+3-6,=11+3-2(1h —-2)=T7—-v; =3.
Hence, 3 = ( = t3 and so

t3+t4 + 1t =10, 3tz + 6t4 + 19 = 56,

5t4 = 40;t4 = 8 > 7; a contradiction.

case 4) B > 3: f =wu,y=2(v1 —2)(f + Bvy —2v1) > 2(11 — 2)(u + v1).
Hence,

(=11+3-0,, <vi+3-2(1—-2)(u+v1) <v1(1-4-211)+3-2(11—2) < 0;

a contradiction.
When u > 1, by the similar way, we can derive a contradiction.
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19.3 case =38
Then p,, = 4; Hence, by Lemma 11,
4=q, + 91/1'

First assume that 6,, = 0.
Then ¢ = 2v; and f + Bvy — 211 = 0.

4=F(n) = —3)x1+2(v; —4)ze + 3(v1 — oz + - .

To find the maximal v, we suppose that 4 > z1(v; — 3). Then vy > 7.
e case 1 = 7. From hypothesis, it follows that 1 = 1 and z; = 0 if j # 1.
Therefore, since o = 14, gy = 132 = 169, we obtain

l=x1 =13+ 16,13 + 16 + 1o+ t7 = 11, 3t3 + 15tg + to + 2147 = 169

2t3 + 14t6 + 20t7 = 158; 6t + 107 = 78.

3tg + bty = 39; hence, tg = 3; a contradiction.
e case v = 6. From hypothesis, it follows that 4 = F(6) = 3z; + 4xs.
Then t4 = x9 = 1. Since o = 12, gg = 112 = 121,

tg +to +1tg = 11,614 + to + 15t = 121,

14t = 105, a contradiction.
e case v} = 5. From hypothesis, it follows that 4 = F(5) = 2x;. Then
t3 +t4 = 21 = 2. Since o = 10, gy = 97 = 81,

t3 + tg +to + t5 = 11, 3t3 + 614 + to + 10t5 = 81,

2t3 + bty + 9t5 = 70, 3t4 + 9t5 = 66;t4 + 3t5 = 22. Therefore, t4 = 1,13 =
1,t5 = 7,to = 2 and the type is [10 * 10;57, 4, 3,22] or its associates.

e case 1 = 4. From hypothesis, it follows that 4 = F(4) = x;. Then
t3 = 11 = 4. Since 0 = 8, g9 = 7% = 49, we obtain

ts + to + t4 = 11, 3t3 + t9 + 64 = 49,

2t3 + 5ty = 38,5ty = 30;t4 = 6,t3 = 4,1 = 1. The type is [8 * 8;45,3% 2] or
1ts associates.
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19.3.1 casef,, >0

Second, assume that 6,, > 0,p > 0.
By 4 = py, > 3v1 =5, 9 > 3v1 , which contradicts the hypothesis 1y > 4.

Third, assume that 6,, > 0,p = 0. Then A=0and 4= C+0,,0, ==
2(1/1 - 2)(f +unB — 21/1) > 0.
We shall study in the following cases 1) B =0,2) B=1and 3) B > 2,
separately.
case 1) B=0: f=0+4+u=2v1+u,y=2(11 —2)(f —2v1) = 2(v1 — 2)u.
case 2) B=1: f=vi+u,y=2(1 —2)(f —1v1) =2(v1 — 2)u.
case 3) B=2: f=wu,y=2(1 —2)f =2(v1 — 2)u.
In any case,
4=(+06, >2v —2)u>4u >4
Thus u =1,{ =0,v; =4,0 = 8,99 = 56.
ts = 0,10 + t4 = 11,19 + 614 = 56.

Sty = 45;t4 = 9,15 = 2 and the type is [8 * 9; 4%, 2?] or its associates.

19.4 case =9
Then r =12, p,, =5 — v1; Hence, by Lemma 11,
5—1 :Cyl +9,,1.

First assume that ¢,, > 0.
From 5 — vy > (,, > v — 3, it follows that v; = 4,0 = 8,99 = 49.1 =
Cy, = F(4) =x1.

t3 = 1,13+t + 14 = 12,3t3 + 1o + 614 = 49.

Hence, 2t3 + 5t4 = 37,5ty = 35;t4 = T,t3 = 1,t5 = 4. The type is [8 *
8;47,3,24] or its associates.

Second assume that (,, = 0.

Suppose that A > 0.

Since A+~ > 31y — 5, it follows that 5 — 1, > 31, — 5; hence, 10 > 4u,
which contradicts the hypothesis v > 4.

Suppose that A = 0. Then 5 — vy > 2(v1 — 2); hence, 9 > 3vq, which
contradicts the hypothesis v > 4.

Therefore, we have established the classification of pairs (S, D) with
g(D) = 0,k[D] = 2, Po[D] = 3 as follows :
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Theorem 12 Pairs (S, D) with g(D) = 0,k[D] = 2, Po[D] = 3 are classified
as follows :

1. If D> = —6 thenr =9 and

(a) if o = 15 then the type is [15 * 22,1;77].

(b) If o = 16 then the type is [16 * 16;85, 7%, 6] or its associates.

(c) If o = 20 then the type is [20 x 20;107,9,5] or its associates.
2. If D?> = =7 then r = 10 and

(a) If 0 =9 then the type is [9 x 13, 1;4°].

(b) If o = 10 then the type is [10 x 10; 55,43 3] or its associates.

(c) If o = 12 then the type is [12% 12;67,5,3%] or [12%12; 65,53, 2] or
their associates.

(d) If o = 14 then the type is [14 % 14;77,6,4,2].
3. If D? = —8 then r =11 and

(a) if o =7 then the type is [T+ 10,1; 3],

(b) If o = 8 then the type is [8  8;45,3% 2] or [8 x 9;4°,22] or their
associates.

c o= then the type s *10;5°,4, 3, or its associates.
I 10 then th js [10 % 10;57,4,3,22] or i j

4. If D?> = —9 then r = 12 and the type is [8 * 8;47,3,2%] or [6 + 7; 3°,27]
or their associates.

5. If D? = —10 then v = 13 and the type is [6 % 6;35,27] or its associates.
6. If D* = —11 then r = 14 and the type is [5 * 7,1;214].

7. If D? = —12 then v = 15 and the type is [4 * 6;2'] or its associates.

Note that pairs (S, D) with g(D) > 0,P[D] = 3 are enumerated as
follows :

Proposition 21 Pairs (S, D) with g(D) > 0,k[D] = 2, P»[D] = 3 are clas-
sified as follows :
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1. If k[D] = 1 then g = 2 the type is [2 * 3;1] or its associates, where

D?* =Z7*=0.

2. If k[D] =2 then g =1 and

20

(a) if D? = =3, then the type is [12 % 12;6%, 53] or its associates.

(b) If D? = —4, then the type is [8 * 8;45, 3] or [8 x 9;4%,2] or [10 *
10;57,4,3,2] or their associates.

(c) If D?* = —5, then the type is [6 * 7;3%,2%] or [8 * 8;47,3,23] or
their associates.

(d) If D* = —6, then the type is [6 * 6;35,25] or its associates.

(e) If D?> = —7, then the type is [5 x 7,1;23].

(f) If D?> = —8, then the type is [4 * 6;2'%] or its associates

invariant

The invariant 1 defined to be ! — w is non-negative, if o > 6 except for the
type [6*8,1;2"]. Next,we shall compute A, v, 2 and w for pairs with 11 <3
as follows.

20.1

examples

If the type is [0 * e, B; 3%, 2%2], then letting f be e — Bo, we obtain

D2=O’B—9t3—4t2=7'0—9t3—4t2,
Z?=(0—2)(B —4) — 4t3 — ty = 19 — 4t3 — to,

Hence,

—1)(B-2
gzw—3t3—t2:ﬂ—3t3—t2.
2 2
T0 T3
A=1— 011y =B 1y
T2 2+ 3 5 3
a=0B —40 — 2B — 3t3 =719 — 8 — 3t3,
9203—80—434-244-152 =174 — 8+ 19,
oB — 60 — 3B T3
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Therefore,
v=Q-w=0B/2-50—-5B/2+24=(0c—5)(B—-10)/2—1=15/2— 1.

If 0 > 6 and 9 < 0 then B = 10 and therefore, the type is [6 % 8,1;27]
and in this case ¢ = —1.

If o > 6 and ¢ = 0 then 75 = 2; hence, either 1) ¢ = 6,8 = 12 or 2)
o=7DB=11.

In the case 1), the type is [6 * 6; 32, 2%2] or their associates;

In the case 2), the type is [7 * 9,1;2"] or their associates because 2 =
f =

If o > 6 and ¢ = 1 then 75 = 4; hence, ¢ = 6,3 = 14 ; the type is
[6 % 7; 33, 2!2] or their associates;

If 0 > 6 and ¢ = 2 then 75 = 6; hence, 1) 0 = 6,8 = 16 or 2)
oc=7,B=130r3)0c=8,B=12.

In case 1), the type is [6 * 8;3!3, 2!2] or their associates.
In case 2), the type is [7 * 10, 1; 32, 2%2] or their associates;
In case 3), the type is [8 % 10, 1;2"] or their associates.

In that follows , we assume that 14 > 4.

20.2 pairs with small ¢

Under the assumption that o > 6 and 1 > 0 , we shall determine the type
of pairs with small ¢. Say v =0, 1, 2.
Putting g = g — 1, we obtain
w=3G-D*>0, R =3Z% —45 = w + .
Thus,
49 +w+1
—

Since § + w + ¢ = 3Z% — 3g = 3A,introduce a parameter k by k = A — 1;
hence, g+ w + ¢ = 3k + 3.

D? =37 -w, Z% =

Then
D? =45+ —3k—3, Z° =g+ k+1,
and
8—r=Ki=Z>+D*-4g=g+¢ — 2k —2.
Hence,

g—r =29+ —2k—10.
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Suppose that £ < 0. Then k = -1l and 1) g = 1l,w =1 =0or 2) g
0,w+1 =1. In the case 1), 2 = 0. However, @ = 322 — 45 =32% > 3; a
contradiction.

In the case 2), 2 = 1. However, 1 = Q2 =322 -4g=322+4>4>4;a
contradiction.

Therefore, k£ > 0 and

D? b—k—1
§0=8—7+§—T=#T7

and thus
& =45 — D* =3k + 3 — 4.

Then by Lemma, we obtain
Ch =W —k—1D11 +3k+3—v9+17.

Supposing that 14 > 4, we shall enumerate types of pairs satisfying the
above equation under the hypothesis ¢ = 0,1, 2.
First, we note that if 4 = 2 then £ > 0 or g = 0.

Claim 9 Ify =2 then k > 0 or g = 0.

Actually, suppose that ¥ = 0. Then w+ g = 1. Hence, 1) w = 1,7 =
0,2=30r2)w=0,g=2,2=3o0r3) w=2,g=-1,Q=4.

In the case 1), D? = —1,Z? = 1,7 = 10 — 2 — g = 8. Therefore, Kg =0
and then by Riemann-Roch, | — Kg| # (0. Hence, —Kg - (2Z — D) > 0. But

0<-Kg-(2Z—-D)=—(Z—-D)-(2Z - D)= 22> -D? = 1.
This is a contradiction.

In the case 2), 2 = 2,Z%2 = 2,9 = 2. But by the previous result,
Z? = g = 2 implies that v = 2, which contradicts the hypothesis v, > 4.

In the case 3), D? = —5,Z% = 0,r = 9. Therefore, since Z? = 0 , it
follows that g = 0.

Note that in the case 3), the type becomes either [10 * 11;5°] or [12 *

?

12;67,5,4] or their associates.
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20.3 casep>1
First assume that p > 1. Then by Lemma, 77 < (01,5 + 2 — 2v1)p. Hence ,

0<C, <W—-—k-1Dvi+3k+3—-4¢+(1,p+2-2u)p

=W —k=3)n+3k+5+d5—v%+(p—1)(01,58+2—211)
(P —k=3)1=3)+(p—1(1,5+2-211) —4+2¢+ 1
< —4 4 2¢ + 61..

Therefore, since vy > 4 , it follows that ¢ =2, =4, p=1,0 =9,k =
0,9 =0. Hence, 3 =3k+3 =—-14+w+ 9% = -1+ w+ 2. This implies
that w = 2,w = —3 — D?. Therefore, D? = —5,¢g = 0. But by Theorem ,
o = 10,12, which contradicts ¢ = 9. But v; > 4 is assumed.

20.4 casep=0
Then n = 2(v1 — 2)(2v1 — Bry — f) <0 and
0<C, =W —-k—1Du+3k+3—9¢+n.
Ifp =0then0 < ¢ = B —v)(k+1)+n < (3—11)(k+1). This

implies that 11 = 3 and 1 = 0. Hence, the type becomes [6 * 6; 3'3, 22] or its
associates. Note that £k = t9 = w.

20.5 case =1
If¢p=1then0< (), =—1nk+3k+2+1.
If n # 0 then n < 4 — 2v; and hence,
0< —k+3k+2+4-2v1=—(k+2)11 +3k+6=—(k+2)(1n —3).

However, since vy > 4, it follows that —(k + 2) < 0, a contradiction.

Suppose that 7 = O,ie., B = 4v; and gy = (2v; — 1)2. Since (,, =
—v1k 4+ 3k + 2 = F(v1), it follows that case A): —1k+3k+2=F(r1) =0
or case B): —k+3k+2=F(r) >, —3.

In the case A),—11k+3k+2=k(3—11)+2=0. Hence, 1) 1 =5,k =1
or2)vy; =4,k =2.
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3k+5
In the case B), it follows that 1 < 5 + . In particular, if £ = 0 then

+1
v1 < 5. Moreover, if K =1 then v < 4.

e Suppose that 1 = 5. In both cases A) and B), £ = 0,1,2. Hence,
go=8lLr=10—% —-g+2k=10—-g+ 2k
In the case A), k= 1,7 =12 — g,t3 = t4, = 0. By genus formula, we get

to+ty3+ty+15 =r=12 — g,to + 3t3 + 6t4 + 10t5 = 81 — g.

So,
to+ts=r=12—g,t2 + 105 = 81 — g; 9t5 = 69.

This is a contradiction.
In the case B), k = 0,7 = 10 — g and {,,, = 2 = (5 — 3)x1, which induces
that 1 = 1,21 = t3 + t4. By genus formula, we get

to+t3+ts+15 =r=10—g,to + 3t3 + 64 + 10t5 = 81 — g.

Hence, 2t3 4+ 5t4 +9t5 = 71;3t4 + 9t5 = 71 — 2 = 69. Therefore, t4 + 3t5 = 23.
Hence, t5 = 7,t4 = 2,t3 = —1,that is a contradiction.

o Ifvy =4, thenk =0,1,2;90 =49, r =104+2k -1 -9 =104+ 2k — g.
Hence, ¢,, = 2 — k = x1, which induces that 1 = t3 = 2 — k. By genus
formula, we get

to+ts+ts=1r=10+ 2k — g,t9 + 3t3 + 6t4 = 49 — g¢.

Hence, 2t3 + 5ty = 39 — 2k;t4y = 7,43 = 2 — k,to = 1+ 3k —g. The
type becomes [8 * 8; 47 32k, 21+3k*9] or its associates. Herew = 2 4+ 19 =
3+3k—9g, Q=34+t =44+3k—gand ¢y =2 —w = 1. Moreover,k =0,1,2
and g < 7.

20.6 case ¢V =2

First note that when ¢ = 2, £ = 0 implies that ¢ = 0 and the type has
already been eumerated. So we assume k = 0.
Second, since ¢ = 2 and p = 0, it follows that

0<¢, =(1—-kr1+3k+1+n.
e If# 0 thenn=2(v; —2)(2vy — Bvy — f) < —2(v1 — 2) and thus

0§C1/1§(1_k)’/1+3k+1—2(1/1—2).
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Then (k + 1)1y < 3k + 5, which implies that vy < 4.
o Ify =4then k=1and (4 =4+ n<0. Moreover, 2v1 — By — f = —1,
ie. 4B+ f =9 and so B = 18,¢4 = 0. This implies that t3 = 0, gy = 56.
By r=10+4+2k —+ — g =11 — g and genus formula

to 4+t =11 — g, to 4+ 64 = 56 — g.

Hence, ty = 9,t3 = 2 — g. Thus the type becomes [8 * 9;4°,2279].

20.7 casen=20

In this case, B = 4u;.
From ¢,, = (1 — k)v1 + 3k + 1 = F(v1), we obtain two cases: case A):
(1—Kk)v1+3k+1=F(r;) =0and case B): (1 —k)v; +3k+1=F(v;) #0.
In the case A),(v1 —3)(k —1) = 4. Hence, 1) vy =7,k =2 or 2)u; =
5,k=3o0r3) vy =4,k =5.

e If vy =7,k =2then gy = 169,r = 13 —g. Since F(v1) = 0, it follows that
t3 =--- =tg = 0. By genus formula, ts + t7 = 13 — g, ts + 21t7 = 169 — g¢.
Hence 20t; = 156; a contradiction.

e Ify) =5k =3 then gy = 81,7 = 15— g. Since F(v;) = 0, it follows that
t3 =ty = 0. By genus formula, t5 + t5 = 15 — g,to + 10t = 81 — g. Hence
9t5 = 66; a contradiction.

o Ifvy =4,k =5 then go = 49,7 = 19 — ¢g. Since F(v1) = 0, it follows
that t3 = 0. By genus formula, t4 = 6,t2 = 13 — g. Thus the type is
[8 * 8; 46 213-9] or their associates.

In the case B),

0§CV1=(1—k)V1+3k+1=F(V1)Zl/l—?),

3k +4 4
+ :3+E§7'

e Ify; =7, thenk=1,0 =14, B = 28 and

and so v; <

A=F)=F7)=(T—3)z1+---.

Thus z; =t3+tg = 1,290 = 3 = 0. Since r = 10+ 2k — 4 — g+ 1, we obtain
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to+1t3+ts+17 =11 — g, to + 3t3 + 15t + 21t7 = 169 — g.
From this, it follows that 3t + 57 = 39,t¢ = 0, 1;a contradiction.
4

4
o Ify =6, then o =12,g0 =121 and k£ < =3 Hence k=1, 4 =
v —

F(1vy) = F(6) = 3z + 4x9; thus 29 = t4 = 1,21 = t3 = t5 = 0. Since
r=10+2k -1 —g+1= 11— g, we obtain

by +ty+tg =11 —g, ty+ 6ty + 15t = 1 = 121 — g.

Then 14t = 105; a contradiction.

4 4
o Ify) =5, then 0 =10,90 = 81 and £k < 3=§=2. Hence k =1, 2.
vy —

Further,6 — 2k = F(v1) = F'(5) = 2z4; thus z; = t3 + t4 = 3 — k. By genus
formula,

to+ts+ts+1ts =942k — g, to+ 3tz + 6t4 + 105 = 81 — g.

Hence, 3ty + 9t5 = 66. Then t5 = 7.ty = 1,t3 = 2 — k,t9 = 3k — g — 1.
The type becomes [10%10;57,4,327%, 23k=9=1] or its associates. In this case,
Q=7—g,w=3k—g—1.
4 4
o If vy = 4, then 0 = 8,99 = 49 and k£ < 3=I=4. Hence
vy —

k=1,2,3,4. Further,b — k = F(1)) = F(4) = z1; thus z; = t3 =5 — k. By
genus formula,

to+its+ts=r=9+4+2k —g, to+ 3t3 + 614 =49 — g.
Then k =1,t4 =6,t3 =5—k =4, =3k — g —2 =1 — g. Thus the type
becomes [8  8; 45, 30k 23’“*2*9] or its associates, where g < 1. In this case,
Q=06,w=4.
20.8 classification by P;;[D]

Counsequently, we obtain the following result.

Theorem 13 Suppose that a minimal pair (S,D) is derived from a #—
minimal pair (g, C) of type [0 x e,B;vy,--- ,v,] where o > 3 or (S,D) is
just (P2, D) of type [d; 1] where d > 9.
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1. case P31[D] = 0. Then either o <5 or the type is [6%8,1;2"] , where
g=20—r.

2. case P31[D] =1. Then

(a) the type becomes [6 x 6;3' 28] | where t3 < 8,1ty =25 —3t3 — g
or their associates or

(b) [7%9,1;22779] .
(c) The type is [9;1].

3. case P31[D] =2 . Then

(a) the type becomes [6 x T;3!3,2'2] or their associates or

(b) [8 % 8;47,327F 2143k=9] or their associates.

4. case P31[D] = 3.

(a) If o = 6 then the type becomes [6 x 8;3'3,2!2] or its associates.
(b) If o =7 then the type becomes [T * 10, 1; 3t2, 2t2].
(¢) If o = 8 then the type becomes
i. [8 % 8;46 357k 23k=9=2] "where k < 5,9 < 3k —2 or
ii. [8%9;4%,2279] | where g < 2 or their associates or
iii. [8 % 10,1;29] , where g < 35 or their associates.
(d) If o = 10 then the type becomes
i. [10 % 10; 57,4,32°k, 23'“*9*1] or its associates, where g < 2,0r
ii. [10 % 11;59) where g = 0 or its associates.

(e) If o = 12 then the type becomes [12 % 12:67,5,4] or its associates
where g =0 .

(f) The type is [10;1].

21 relations between Z? and D?

Next, we shall study relations between Z? and D?. First , we suppose that
v < 2.
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Graph of (D°2 and'Z°2), a>b
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Figure 5: relations between D? and Z?%, with o > 6

108



r ' w

Graph of (D72 and 772; ¢=3)
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Figure 6: relations between D? and Z?%, with o > 6
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21.1 Case v; <2
If a minimal pair (S, D) with x[D] = 2 is derived from a # — minimal model
of type [0 * e, B;2"], then
D? = 0B — 4r, 2?203—20—3—27",
ZP=K:-D?’4+45=8—r—0oB +4r+2(cB - 20— B —2r)
Z?=8—r+ (0 —2)B — 4o.

?

Eliminating g and B from these, we obtain
0Z* = (0 —2)D* + (30 — 8)r — 4o(0 — 2).
In particular, if 0 = 3 then
3Z* = D* - 12.

If 0 = 4 then
27% = D? + 2r — 16.

If 0 = 5 then
52% = 3D? + Tr — 40.

21.2 Case o >6

Hereafter, we suppose that o > 6. If the type is not [6 * 8,1;2"] then by
Theorem |3Z — 2D| # () and so

2 =2(3Z? — TG+ D% = (3Z - 2D)-(2Z — D) > 0.
Therefore,
322+ D?> 75> —T.
Furthermore, define & = 922 — 4D?. Then from
3¢ =3(3Z2% + D* - 7g9) = 9Z° + 3D* - 21 == — 7(35 — D?)
it follows that
E=3+Tw

which is nonnegative when o > 7 asn the type is not [6 * 8,1;2"]. Hence, in
this case,
9Z? > 4D?.

Moreover,if 92?2 —4D? = 0 then w = 0,7 = 0. Then 3Z —2D ~ D+3K ~ 0.
Furthermore ifE = 92? — 4D? > 0 then £ = 3,6,7- - -.
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21.3 Plane curves with only double points

Suppose that the type is [d;2"]. Then

Z?=(d—-3)*—r,D*=d* — 4r.

Hence,

d? — 15d + 54
3Z°+D*+7= ++7g, 9Z% —4D? = (d — 9)(5d — 9) + Tr-
If d = 8 then

3Z° +D*+7=—-1+7g, 9Z>—4D?="Tr —31.

Therefore, if the type is [6%8, 1;27] with r < 5, then 922 —-4D? = 7r—31 < 0.
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