On logarithmic plurigenera of algebraic plane curves (the fourth version)

Shigeru Iitaka, Gakushuin University, Tokyo,JAPAN

May 20, 2011

Contents

1	Introduction	3
2	minimal models of pairs 2.1 birational transformations between pairs	4 4 5 6
3	Elementary transformations 3.1 $I_{+}(p,\nu_{1}), I_{-}(p,\nu_{1})$	7 7 9 11
4	logarithmic plurigenera4.1nef divisors4.2formula for plurigenera4.3Formula I4.4mixed plurigenera4.5estimates for bigenera	11 11 14 15 17
5	relations between A and α	2 1
6	relations between Ω and ω 6.1 Case $\nu_1 \leq 3$	24 24 27

7	curv	ves with $Z^2 = 1$	28
	7.1	case $g = 2, 3 \dots \dots$	29
	7.2	case $g = 1 \dots \dots \dots$	29
	7.3	Formula II	30
	7.4	sharper estimate	31
	7.5	case $D^2 = -2, -3, -4$	32
8	curv	ves with $Z^2 = 2$	35
	8.1	case $g = 2, 3, 4$	35
	8.2	case $q=1$	36
	8.3	case $D^2 = -3$	37
		8.3.1 case $\eta = 0$	40
	8.4	case $D^2 = -4$	$\overline{43}$
	_	8.4.1 case $\eta \neq 0$	43
		8.4.2 case $\eta = 0$	44
	8.5	case $D^2 = -5$	45
	8.6	case $D^2 = -6$	46
9	Cury	ves with $Z^2 = 3$	46
	Cui	9.0.1 A) case $\nu_1 \geq 3$	47
	9.1	case $D^2 = 4g - 8$	49
	0.1	9.1.1 case $\eta = 0 \dots \dots \dots \dots$	49
		9.1.2 case $\eta \neq 0$	50
	9.2	case $D^2 = 4g - 9$	51
	9.3	case $D^2 = 4g - 10$	51
	0.0	9.3.1 B) case $\nu_1 \leq 2 \dots \dots \dots \dots$	52
10	curv	ves with $P_{2,1}[D] = 1$	53
11	curs	ves with $P_{2,1}[D] = 2$	54
	11 1	case $D^2 = 6 \dots \dots \dots \dots \dots$	55
		case $D^2 = 5$	56
	11.2		00
12	curv	29±L J	57
		12.0.1 A) case $\nu_1 \geq 3$	58
	12.1	case $D^2 = 4g - 8$	60
		12.1.1 case $\eta = 0 \dots \dots \dots \dots \dots \dots \dots$	60
		12.1.2 case $\eta \neq 0$	61
		case $D^2 = 4g - 9$	61
	12.3	case $D^2 = 4a - 10$	62

	12.3.1 B) case $\nu_1 \le 2$	63
13	curves with $Q=1,2$ 13.1 Formula II'	64 66
14	rational curves	67
15	logarithmic plurigenera 15.1 invariant $P_{3,1}[D]$	69 71
16	curves with $P_2[D] = 2$	72
	16.1 case $\beta = 5$	73 73 74
	16.1.2 case $\gamma = 0$	76 76
	16.4 case $\beta = 8$	77 77
17	rational curves with $Q = 1,2$	78
18	inequalities between \mathbb{Z}^2 and \mathbb{D}^2	79
	18.1 curves parametrized by polynomials	80 82
19	curves with $P_2[D] = 3$	82
	19.1 case $\beta = 6$	85 90
	19.1.2 case $p = 0$	91 93 95
	19.3 case $\beta = 8$	97 98
	19.4 case $\beta = 9$	98
20	I	. 00 100
	20.1 examples	101
	$20.4 \text{ case } p = 0 \dots \dots \dots \dots \dots \dots \dots \dots$	

	$20.6 \text{ case } \psi = 2 \dots \dots$
	20.7 case $\eta = 0 \dots \dots$
	20.8 classification by $P_{3,1}[D]$
21	relations between Z^2 and D^2
	21.1 Case $\nu_1 \le 2 \dots 110$
	21.2 Case $\sigma \geq 6$
	21.3 Plane curves with only double points

1 Introduction

Let C be an algebraic curve on the projective plane \mathbf{P}^2 . Let $P_m[C]$ denote logarithmic m genus of pairs (\mathbf{P}^2, C) . $P_1[C]$ turns out to be the genus g of C. These are invariant under Cremona transformations, i.e., birational transformations between the projective plane \mathbf{P}^2 and itself.

To compute logarithmic plurigenera $P_m[C]$, one has to construct nonsingular minimal pairs (S, D) which are birationally equivalent to the given (\mathbf{P}^2, C) . Let Z be $D+K_S$. Then Z^2, D^2, g where g is the genus of the curve D, are birational invariants as pairs. Moreover, $P_{2,1}[D] = \dim |2K_S + D| + 1$ is called, the (2,1) genus of a nonsingular pair (S,D) Inequalities among these invariants will be established.

The invariant bigenus $P_2[C]$ is very powerful to characterize algebraic plane curves of certain type, that was first recognized by Coolidge [2]. Actually he showed the next two results in 1928:

- 1) if $P_2[C] = 0$ then by a Cremona transformation, C is transformed into a line.
- 2) If $P_2[C] = 1$ then by a Cremona transformation, C is transformed into either a nonsingular cubic or a rational curve of degree 3m with nine m ple points and a double point.

The purpose of this paper is to extend his results. Actually, structure of plane curves C with $P_2[C] = 2, 3, Z^2 = 0, 1, 2, 3$ or $P_{2,1}[C] = 1, 2, 3$ will be determined.

2 minimal models of pairs

2.1 birational transformations between pairs

Here, we recall basic notions and results in birational geometry of pairs (see [5, Iitaka]). Let C be a curve on a non-singular projective surface S.

Two pairs (S, C) and (S_1, C_1) are said to be birationally equivalent, if there exists a birational map $f: S \to S_1$ such that the proper image f[C]of C by f coincides with C_1 . Here the proper image f[C] is, by definition, the closure of the image f(x) of the generic point x of C. When there is no danger of confusion, we say that C is birationally equivalent to C_1 as imbedded curves if two pairs (S, C) and (S_1, C_1) are birationally equivalent. f is said to be a birational transformation between pairs.

The purpose of birational geometry of pairs is to study properties of pairs (S, C) which are invariant under birational transformations.

A pair (W, D) is said to be non-singular, if both W and D are non-singular. In this case, we have complete linear systems $|m(D + K_W)|$ for any m > 0, where K_W indicates a canonical divisor on W. The dimension $\dim |m(D + K_W)| + 1$ depends on both D and W. But to simplify the notation, we use the symbol $P_m[D]$ to denote $\dim |m(D + K_W)| + 1$. Using this we define the Kodaira dimension $\kappa[D]$ of (W, D) to be the degree of $P_m[D]$ as a function in m. It is easy to see that $P_m[D]$ and $\kappa[D]$ are birational invariants of (W, D) in the above sense. Hereafter, we shall consider pairs (S, D) in which S is rational. Then $P_1[D]$ turns out to be the genus of D, denoted by g(D).

A non-singular pair (S, D) is said to be relatively minimal, whenever the intersection number $D \cdot E \geq 2$ for any exceptional curve (of the first kind) E on S such that $E \neq D$. In this case every birational morphism from (S, D) into another non-singular pair (S_1, D_1) turns out to be isomorphic. Moreover, the pair (S, D) is said to be minimal, if every birational map from any non-singular pair (S_1, D_1) into (S, D) turns out to be regular. Any relatively minimal pair (S, D) is minimal if $\kappa[D] = 2$ (see Theorem I in [6]). In this case, the self-intersection number D^2 is a birational invariant. Moreover, if $\kappa[D] \geq 0$, D^2 is also a birational invariant except for the case in which $\kappa[D] = 0$ and $P_1[D] = 1$.

It is well known that given a rational surface S, after contracting all exceptional curves on S successively, we get relatively minimal models of S. Relatively minimal models of rational surfaces are the projective plane \mathbf{P}^2 or $\mathbf{P}^1 \times \mathbf{P}^1$ or a \mathbf{P}^1 – bundle over \mathbf{P}^1 which has a section Δ_{∞} with negative self intersection number. The last surface is denoted by a symbol Σ_B where

-B denotes the self intersection number Δ_{∞}^2 of the section Δ_{∞} . Here, we call Σ_B Hirzebruch surface of degree B after Kodaira.

For simplicity, we let Σ_0 denote the product surface $\mathbf{P}^1 \times \mathbf{P}^1$. The Picard group of $\Sigma_B(B \geq 0)$ is generated by the section Δ_{∞} and a fiber $F_c = \rho^{-1}(c)$ of the \mathbf{P}^1 – bundle, where $\rho : \Sigma_B \to \mathbf{P}^1$ is the projection.

2.2 curves on Σ_B

Let C be an irreducible curve on Σ_B . Then there exist integers σ and e such that

$$C \sim \sigma \Delta_{\infty} + eF_c$$
.

We have $C \cdot F_c = \sigma$ and $C \cdot \Delta_{\infty} = e - B \cdot \sigma$. Hereafter, suppose that $C \neq \Delta_{\infty}$. Thus $C \cdot \Delta_{\infty} \geq B$ and hence, $e \geq \sigma \cdot B$. If B > 0 then $\Delta_{\infty}^2 = -B < 0$ and such a section Δ_{∞} is uniquely determined. For a surface $\Sigma_0 = \mathbf{P}^1 \times \mathbf{P}^1$, we get $F_c \sim \mathbf{P}^1 \times \mathbf{P}^1$ point and $\Delta_{\infty} \sim \mathrm{point} \times \mathbf{P}^1$. We may assume that $e \geq \sigma$. Thus σ and e are uniquely determined for a given curve C on Σ_B .

Letting g_0 be the virtual genus of C and K_0 a canonical divisor on Σ_B , we get

$$2g_0 - 2 = C^2 + K_0 \cdot C$$

= $(\sigma \Delta_{\infty} + eF_c) \cdot ((\sigma - 2)\Delta_{\infty} + (e - B - 2)F_c)$
= $B(1 - \sigma)\sigma + 2(e\sigma - e - \sigma)$.

Hence,

$$g_0 = (e-1)(\sigma - 1) - \frac{B\sigma(\sigma - 1)}{2},$$
$$C^2 = 2e\sigma - \sigma^2 b.$$

Letting $f = e - B\sigma = C \cdot \Delta_0 \ge 0$, we obtain

$$C \sim \sigma \Delta_0 + f F_c,$$

$$K_0 \sim -2\Delta_0 - (2-B)F_c,$$

$$Z_0 = C + K_0 \sim (\sigma - 2)\Delta_0 + (f - 2 + B)F_c,$$

where Δ_0 is an irreducible curve linearly equivalent to $\Delta_{\infty} + BF_c$. Thus,

$$g_0 = (f-1)(\sigma-1) + \frac{B\sigma(\sigma-1)}{2} = \frac{(\sigma-1)(B\sigma+2f-2)}{2},$$

$$C^{2} = 2f\sigma + \sigma^{2}B = \sigma(2f + B\sigma),$$

$$C^{2} = \frac{2\sigma}{\sigma - 1}g_{0} + 2\sigma,$$

$$Z_{0}^{2} = \frac{2\sigma - 4}{\sigma - 1}g_{0} + 4 - 2\sigma.$$

2.3 types of pairs

We assume C to be singular. Let $\nu_1(C)$ denote the highest multiplicity of the singular point of C. We take a singular point p_1 on C with $\operatorname{mult}_{p_1}(C) = \nu_1(C)$, that is denoted by ν_1 . Blowing up at center p_1 , we obtain a surface S_1 and a proper birational morphism $\mu_1: S_1 \to S_0 = \Sigma_B$, which satisfies

$$\mu_1^*(C) \sim C_1 + \nu_1 E_1$$

where $E_1 = \mu_1^{-1}(p_1)$ and C_1 is the proper transform of C by μ_1^{-1} . Letting K_0 and K_1 denote canonical divisors of $S_0 = \Sigma_B$ and S_1 , respectively, we have

$$K_1 \sim \mu_1^*(K_0) + E_1$$
.

In order to simplify the notation, the total inverse images of divisors are denoted by the same symbol. For example, the above relation is denoted by

$$K_1 \sim K_0 + E_1$$
.

Letting ν_2 denote $\nu_1(C_1)$ and taking p_2 on C_1 such that $\operatorname{mult}_{p_2}(C_1) = \nu_2$, we get a surface S_2 and a birational morphism $\mu_2: S_2 \to S_1$ which is obtained by blowing up at p_2 . Continuing this process, we obtain a sequence of birational morphisms $\mu_1, \mu_2, \dots, \mu_r$ such that the composition μ of these morphisms gives rise to a minimal resolution of the singularities of the imbedded curve C:

$$W = S_r \xrightarrow{\mu_r} S_{r-1} \xrightarrow{\mu_{r-1}} \cdots \xrightarrow{\mu_2} S_1 \xrightarrow{\mu_1} S_0 = \Sigma_B.$$

Thus letting $\nu_j = \text{mult}_{p_j}(C_{j-1})$, we get a sequence of integers $\nu_1, \nu_2, \dots, \nu_r$ such that $\nu_1 \geq \nu_2, \dots, \nu_r \geq 2$, where C_0 stands for C.

Definition 1 The type of the pair (Σ_B, C) is defined to be $[\sigma *e, B; \nu_1, \nu_2, \cdots, \nu_r]$ and the type of a curve C on \mathbf{P}^2 is denoted by $[d; \nu_0, \nu_1, \nu_2, \cdots, \nu_r]$ where d is the degree of C and $\nu_0, \nu_1, \nu_2, \cdots, \nu_r$ denote the multiplicities of singular points of C.

Occasionally, the curve C of a pair (Σ_B, C) is said to be a curve of type $[\sigma * e, B; \nu_1, \nu_2, \dots, \nu_r]$. For simplicity, $[\sigma * e, 0; \nu_1, \nu_2, \dots, \nu_r]$ is rewritten as $[\sigma * e; \nu_1, \nu_2, \dots, \nu_r]$.

In the case where C is itself non-singular, we put r=0 or r=1 and ν_1 =1 by convention.

3 Elementary transformations

3.1 $I_+(p,\nu_1), I_-(p,\nu_1)$

We shall introduce special kinds of birational transformations among Hirzebruch surfaces, called elementary transformations. Take a point p on Σ_B . Blowing up at p, we get a birational morphism $\mu: S_1 \to S_0 = \Sigma_B$. Then letting F be a fiber $\rho^{-1}(\rho(p))$ of Σ_B and letting E be the exceptional curve $\mu^{-1}(p)$, we obtain

$$\mu^*(\sigma\Delta_{\infty} + eF_c) \sim \mu^*(C) = C' + \nu_1 E,$$

$$\mu^*(F_c) \sim \mu^*(F) = F' + E.$$

Here $F_c = \rho^{-1}(c)$; F' and C' denote the proper inverse images of F and C, respectively, and ν_1 indicates the multiplicity of C at p.

If $p \in \Delta_{\infty}$, then denoting by Δ'_{∞} the image of Δ_{∞} , we get $(\Delta'_{\infty})^2 = -B - 1$. Moreover, $\mu^*(\Delta_{\infty}) = \Delta'_{\infty} + E$, and

$$C' \sim \sigma(\Delta'_{\infty} + E) + e(F' + E) - \nu_1 E$$
.

Since $F'^2=-1$, F' becomes an exceptional curve. Contracting F' into a non-singular point p', we get a non-singular surface S' and a proper birational morphism $\mu':S_1\to S'$. By $\Delta'_\infty\cdot F'=\Delta_\infty\cdot F-1=1-1=0, \mu'$ is isomorphic around Δ'_∞ . Thus, the image Δ''_∞ of Δ'_∞ by μ' is isomorphic to Δ'_∞ . Hence,

$$(\Delta''_{\infty})^2 = {\Delta'_{\infty}}^2 = {\Delta_{\infty}}^2 - 1 = -B - 1.$$

This implies that S' is isomorphic to Σ_{B+1} . The image of C' by μ' is denoted by C_0 , that satisfies

$$C_0 \sim \sigma' \Delta_{\infty}'' + e' F_v,$$

for some integers σ' and e', where F_v is a fiber of the \mathbf{P}^1 – bundle Σ_{B+1} . The proper inverse image F' of F_v by μ' satisfies

$$\mu'^*(F_v) = F' + E.$$

Let ν'_1 denote the multiplicity of C_0 at p'. Then

$$C' \sim \sigma' \Delta_{\infty}'' + e'(F' + E) - \nu_1' F'.$$

Since E, F' and Δ''_{∞} are linearly independent, it follows that

$$\sigma' = \sigma, \quad \sigma + e - \nu_1 = e', \quad e = e' - \nu'_1.$$

Hence,

$$\nu'_1 = \sigma - \nu_1, \quad e' = e + \nu'_1 = e + \sigma - \nu_1.$$

Also in the case when $p \notin \Delta_{\infty}$, we get the similar result. Thus, the next proposition is established.

Proposition 1 1. If $p \in \Delta_{\infty}$ then $\sigma' = \sigma$, $S' = \Sigma_{B+1}$ and $\nu'_1 = \sigma - \nu_1, e' = e + \nu'_1$.

2. If
$$p \notin \Delta_{\infty}$$
 then $\sigma' = \sigma, B > 0$ and $S' = \Sigma_{B-1}, \nu'_1 = \sigma - \nu_1, e' = e - \nu_1$.

Note that in the case when $B=1, p \notin \Delta_{\infty}$, S' becomes Σ_0 and $e' < \sigma'$ may happen.

The birational map $\mu \cdot \mu'^{-1}$ is called elementary transformation of type I. More precisely, if $p \in \Delta_{\infty}$ then the birational map $\mu \cdot \mu'^{-1}$ is said to be the elementary transformation $I_{+}(p,\nu_{1})$. If $p \notin \Delta_{\infty}$ then the birational map $\mu \cdot \mu'^{-1}$ is said to be the elementary transformation $I_{-}(p,\nu_{1})$.

NOTE: During the performance of an elementary transformation, the singular point with multiplicity ν_1 disappears and a singular point with multiplicity ν_1' appears if $\nu_1' > 0$.

Let (S, D) be a pair obtained from the pair (Σ_B, C) of type $[\sigma *e, B; \nu_1, \nu_2, \cdots, \nu_r]$ by minimal resolution of singularities of C. Moreover, let (S_0, D_0) be a pair obtained by minimal resolution of singularities from the pair (S, D) by the elementary transformation $I_+(p, \nu_1)$ where $\nu_1 = \text{mult}_p(C)$. Then if $\nu'_1 \neq 1$, we get

$$D_0^2 - D^2 = C^2 - \nu_1^2 - C_0^2 + \nu_1'^2$$

= $\sigma(2e - \sigma B) - \nu_1^2 - \sigma(2(e + \sigma - \nu_1) - \sigma(B + 1)) + \nu_1'^2 = 0.$

Moreover, if $\nu'_1 = 1$, then

$$D_0^2 - D^2 = 1.$$

Thus, D^2 increases.

In both cases, we write $D_0^2 - D^2 = \varepsilon(I_-(p, \nu_1))$. Similarly, let (S, D) be a pair obtained by minimal resolution of singularities from the pair (Σ_B, C)

and let (S_0, D_0) be a pair obtained by minimal resolution of singularities from the pair (S, D) by the elementary transformation $I_{-}(p, \nu_1)$. In this case, if $\nu'_1 \neq 1$, then

$$D_0^2 - D^2 = 0$$

and moreover, if $\nu'_1 = 1$, then

$$D_0^2 - D^2 = 1$$
.

When $\sigma = 2\nu_1$ and $p_1 \in \Delta_{\infty}$, after performing an elementary transformation $I_+(p,\nu_1)$ to a pair of type $[\sigma * e, B; \nu_1, \nu_2, \cdots, \nu_r]$, the new type denoted by $[\sigma * e', B'; \nu_1, \nu_2, \cdots, \nu_r]$ satisfies that $e' = e + \nu_1, B' = B + 1$ and then $g_0 = (e-1)(\sigma-1) - \frac{B\sigma(\sigma-1)}{2} = (e'-1)(\sigma-1) - \frac{B'\sigma(\sigma-1)}{2}$ and $C^2 = 2e\sigma + \sigma^2 B = 2e'\sigma + \sigma^2 B'$. Therefore, g_0 and C^2 are invariant under elementary transformations $I_+(p,\nu_1)$ and $I_-(p,\nu_1)$.

Therefore, starting from the type $[2\nu_1 * e; \nu_1, \nu_2, \cdots, \nu_r]$, we get the type $[2\nu_1 * (e+\nu_1), 1; \nu_1, \nu_2, \cdots, \nu_r]$ and $[2\nu_1 * (e+2\nu_1), 2; \nu_1, \nu_2, \cdots, \nu_r]$ provided that $e+2\nu_1 \geq 4\nu_1$. Note that if $e \geq i\nu_1$ then the type $[2\nu_1 * (e+i\nu_1), i; \nu_1, \nu_2, \cdots, \nu_r]$ is possible.

Remark 1 Moreover, if $e \ge i\nu_1$ then the types $[2\nu_1*(e+i\nu_1), i; \nu_1, \nu_2, \cdots, \nu_r]$ for $1 \le i \le [e/\nu_1]$ are said to be the types associated with $[2\nu_1*e, 0; \nu_1, \nu_2, \cdots, \nu_r]$.

For example, the types associated with $[8*8;4^6,3^4]$ are $[8*12,1;4^6,3^4]$ and $[8*16,2;4^6,3^4]$.

After a finite succession of elementary transformations of type I and II, we can assume $\sigma = 0$ or $\sigma = 1$ or $\sigma \ge 2\nu_1$ and moreover if B = 0, then we assume that $\sigma \ge 2\nu_1$ and $\sigma \le e$.

3.2 III (p, ν_1)

In the case when B=1, we get $\Delta_{\infty}^2=-1$; hence Δ_{∞} is also an exceptional curve. Take a point p from $S-\Delta_{\infty}$ with multiplicity ν_1 and blow up at p. Then we obtain a non-singular surface U and a proper birational morphism $\mu:U\to\Sigma_1$. The inverse image of p is an exceptional curve E, that satisfies $\Delta_{\infty}\cap E=\emptyset$. Letting C' denote the proper inverse image of C, we get

$$C' \sim \sigma \Delta_{\infty} + e(F' + E) - \nu_1 E$$
.

Contracting Δ_{∞} into a non-singular point q, we get a non-singular surface W and a proper birational morphism $\lambda: U \to W$. W is isomorphic to Σ_1 , which has a \mathbf{P}^1 - fibering. The image of E is a section of the fibering, which we denote by Δ . Then $\Delta^2 = -1$. The image C_0 of C' by λ is written as follows for some σ' and e' in the space of linear equivalence classes:

$$C_0 \sim \sigma' \Delta + e' F_v$$
.

Here F_v denotes a general fiber of the \mathbf{P}^1 bundle of W. By the same argument as before, we get

$$\sigma' = e - \nu_1, \quad e' = e, \quad \nu_1' = e - \sigma,$$

where ν'_1 indicates the multiplicity of C_0 at q. The birational map φ : $W \to \Sigma_1$ that is a composition of μ and λ^{-1} is said to be an elementary transformation $\text{III}(p,\nu_1)$. Then

$$C^2 - {\nu_1}^2 = \sigma(2e - \sigma) - {\nu_1}^2$$

and

$$C_0^2 - \nu_1'^2 = (e - \nu_1)(2e - e + \nu_1) - (e - \sigma)^2 = \sigma(2e - \sigma) - \nu_1^2 = C^2 - \nu_1^2.$$

Letting (S, D) be a pair obtained by minimal resolution of singularities from the pair (Σ_B, C) and (S_0, D_0) a pair obtained by minimal resolution of singularities from the pair by the elementary transformation $III(p, \nu_1)$.

If $\nu'_1 \neq 1$, then

$$D_0^2 - D^2 = 0$$

and moreover, if $\nu'_1 = 1$, then

$$D_0^2 - D^2 = 1$$
.

Also in these cases, we write $D_0^2 - D^2 = \varepsilon(\text{III}(p, \nu_1))$.

Now we take a point p_1 where $\nu_1 = \text{mult }_{p_1}(C) = \nu_1(C)$. If $e - \sigma < \nu_1$, then Δ_{∞} does not pass through p_1 , since $e - \sigma = \Delta_{\infty} \cdot C < \text{mult}_{p_1}(C) = \nu_1$. Thus we can apply an elementary transformation of type III with center p_1 and then the transformed curve C_0 has the type $[\sigma' * e', 1; \nu'_1, \nu_2, \cdots, \nu_r]$, where $\nu'_1 = e - \sigma < \nu_1$ and $\sigma' = e - \nu_1 < \sigma$. Note that ν'_1 may be smaller than ν_2 .

3.3 #- minimal model

Finally we consider the case when C is itself non-singular. If B=1 and $e-\sigma=\nu_1=1$, then Δ_{∞} is an exceptional curve with $\Delta_{\infty}\cdot C=1$. This implies that (Σ_1,C) is not relatively minimal. Contracting Δ_{∞} into a non-singular point of \mathbf{P}^2 , we get a non-singular curve C_1 on \mathbf{P}^2 . The contraction gives rise to a birational morphism $\lambda: \Sigma_1 \to \mathbf{P}^2$ which is the inverse of the blowing up. The morphism λ is said to be a transformation $O_{-}(\Delta_{\infty})$.

Definition 2 Assume that $\sigma \geq 2\nu_1$ and $e \geq \sigma + B\nu_1$. Moreover, if B = 1 then assume $e - \sigma > 1$. When the above conditions are satisfied, the pair (Σ_B, C) is said to be #- minimal. Occasionally, the #- minimal pair (Σ_B, C) is said to be a #- minimal model of a pair (S, D), if it is birationally equivalent to (S, D).

For simplicity, the curve C is said to be #- minimal, whenever the pair (Σ_B, C) is #- minimal.

4 logarithmic plurigenera

Let (S, D) be a non-singular minimal pair. Then either $S = \mathbf{P}^2$ or (S, D) is derived from a #- minimal pair (Σ_B, C) of type $[\sigma * e, B; \nu_1, \nu_2, \cdots, \nu_r]$ by a finite succession of blowing ups at singular points of C.

The next relations among linear equivalence classes hold:

$$D \sim C - \sum_{j=1}^{r} \nu_j E_j, \quad K_S \sim K_0 + \sum_{j=1}^{r} E_j,$$

$$D + \nu_1 K_S \sim C + \nu_1 K_0 + \sum_{j=1}^r (\nu_1 - \nu_j) E_j.$$

Then $|C + \nu_1 K_0| \neq \emptyset$ and so $|D + \nu_1 K_S| \neq \emptyset$.

4.1 nef divisors

We recall some basic results on non-singular minimal pairs (S, D) under the assumption g = g(D) > 0 ([6, Iitaka]). For simplicity, g - 1 is denoted by \overline{g} .

Whenever g > 0, $Z = K_S + D$ is a nef divisor and $Z \cdot D = 2\overline{g}$, $Z^2 \ge 0$. Moreover, $Z^2 = 0$ if and only if $\kappa[D] = 0, 1$ ([6, Proposition 3,p299]).

We shall prove the following three lemmas.

Lemma 1 1. $(D + \nu_1 K_S) \cdot D > 0$,

 $2. (\nu_1 - 1)D^2 \le 2\nu_1 \overline{g}.$

In particular, if $\nu_1 \geq 2$ then $D^2 \leq 4\overline{g}$. Moreover, if $\nu_1 \geq 3$ then $D^2 \leq 3\overline{g}$.

Proof: Suppose that $(D + \nu_1 K_S) \cdot D < 0$. Then since $|D + \nu_1 K_S| \neq \emptyset$, it follows that $|D + \nu_1 K_S - D| \neq \emptyset$. This implies that $|\nu_1 K_S| \neq \emptyset$; hence, $\kappa(S) \geq 0$. This contradicts that S is a rational surface. Hence, $(D + \nu_1 K_S) \cdot D \geq 0$. On the other hand, $(\nu_1 Z - (\nu_1 - 1)D) \cdot D = 2\nu_1 \overline{g} - (\nu_1 - 1)D^2$, which induces the result.

Lemma 2 Suppose that $\nu_1 \geq \nu > 0$. If Y is a nef divisor on S, then $(D + \nu K_S) \cdot Y \geq 0$.

Proof: Since $|D + \nu_1 K_S| \neq \emptyset$, taking F from $|D + \nu_1 K_S|$ we obtain

$$\nu_1(D + \nu K_S) \sim \nu_1 D + \nu (F - D) = (\nu_1 - \nu)D + \nu F.$$

Hence, $\nu_1(D + \nu K_S) \cdot Y = ((\nu_1 - \nu)D) \cdot Y + \nu F \cdot Y \ge 0$; thus we obtain the result.

Lemma 3 (Theorem of adjoint of special index 2) Under the hypothesis that $\kappa[D] = 2$ and $\sigma \ge 4$, $2Z - D = D + 2K_S$ is a nef divisor. Moreover, $(2Z - D)^2 \ge 0$. If $(2Z - D)^2 = 0$ then $2Z - D \sim 0$ and $\sigma = 4$.

When the type is [d;1], 2Z - D is a nef divisor if and only if $d \ge 6$. Moreover, if $(2Z - D)^2 = 0$ then the type is [6;1].

Proof: Since $\sigma \geq 4$, it follows that $2Z_0 - C \sim (\sigma - 4)\Delta_0 + (f + 2B - 4)F_c$, which is nef. Moreover, $(2Z_0 - C)^2 = (\sigma - 4)(B\sigma + 2f - 8) \geq 0$. Thus $(2Z_0 - C)^2 = 0$ if and only if $\sigma = 4$. Therefore, if $\nu_1 = 1$, namely if C is nonsingular, the result follows.

Suppose that $\nu_1 \geq 2$. Even in the case where g = 0, $|D + 2K_S| \neq \emptyset$.

Assume that there were an irreducible curve A such that $(2Z-D)\cdot A<0$.

Then $D \neq A$. Indeed, by Lemma 1, $D^2 \leq \frac{2\nu_1}{\nu_1 - 1}\overline{g} \leq 4\overline{g}$. In particular, $(D + 2K_S) \cdot D = (2Z - D) \cdot D = 4\overline{g} - D^2 \geq 0$.

Taking F from $|D + \nu_1 K_S|$, we get

$$\nu_1(2Z-D) \sim \nu_1 D + 2\nu_1 K_S \sim 2F + (\nu_1-2)D$$
.

Then $A \cdot (2F + (\nu_1 - 2)D) < 0$ and so $2A \cdot F < -A(\nu_1 - 2) \cdot D \le 0$, which would imply that $A \cdot F < 0$ and so $A^2 < 0$. Moreover,

$$0 > (2Z - D) \cdot A = D \cdot A + 2K_S \cdot A \ge 2K_S \cdot A.$$

Therefore, $A^2 = A \cdot K_S = -1$ and so $0 > D \cdot A - 2$; thus $D \cdot A < 2$. But since (S, D) is minimal, it follows that $A \cdot D \geq 2$; a contradiction.

Recalling that $\nu_1 \geq 2$ and that 2Z - D is nef, by Lemma 2 we get $(2Z - D)^2 > 0$.

Assume that $(2Z - D)^2 = 0$. We shall examine the equality in the following cases, separately.

case (1) $\nu_1 \ge 3$.

Since 2Z - D is nef and $\nu_1 \geq 3$, it follows that $(3Z - 2D) \cdot (2Z - D) \geq 0$. But

$$0 \le (3Z - 2D) \cdot (2Z - D)$$

=2(2Z - D) \cdot (2Z - D) + -Z \cdot (2Z - D)
= -Z \cdot (2Z - D) \le 0.

Hence, $(3Z-2D)\cdot(2Z-D)=Z\cdot(2Z-D)=0$. Therefore, $D\cdot(2Z-D)=0$; hence it follows that $D^2 = 4\overline{q}$ and $Z^2 = \overline{q}$.

Assume that q > 1. Then Z is nef and big. Hence, $D + 2K_S = 2Z - D \sim 0$ by Hodge's index Theorem.

Moreover,

$$\nu_1 Z - (\nu_1 - 1)D \sim \nu_1 Z - 2(\nu_1 - 1)Z = (2 - \nu_1)Z.$$

But $|\nu_1 Z - (\nu_1 - 1)D| \neq \emptyset$ and $\kappa(S, Z) \geq 0$. Hence, $Z \sim 0$, which contradicts

Assume that g = 0. Then $D^2 = 4\overline{g} = -4$, which contradicts the fact $D^2 \le -5$.

case (2) $\nu_1 \le 2$.

Since $2Z - D \sim D + 2K_S \sim C + 2K_0$, it follows that

$$(2Z - D)^2 = (C + 2K_0)^2 = (\sigma - 4)(\sigma B + 2f - 8) \ge 0.$$

But $\sigma \geq 4$ and Q = 0. Hence, we obtain $\sigma = 4$.

In what follows, Q stands for $(2Z - D)^2$.

4.2 formula for plurigenera

Proposition 2 Suppose that (S,D) is minimal with $g = g(D) \ge 2$ and $\kappa[D] = 2$. Then letting $Z = K_S + D$, for any m > 0, if g > 1 then

$$P_m[D] = \frac{m(m-1)}{2}Z^2 + m\overline{g} + 1,$$

$$P_2[D] = Z^2 + 2g - 1 = Z^2 + 2\overline{g} + 1.$$

Moreover, if g = 1 then

$$P_m[D] = \frac{m(m-1)}{2}Z^2 + 2,$$

 $P_2[D] = Z^2 + 2.$

Proof: Since Z is nef and big, by a vanishing theorem due to Kawamata, $H^1(S, \mathcal{O}_S(K_S + mZ)) = 0$ for any m > 0. Hence, by Riemann-Roch,

$$\dim H^0(S, \mathcal{O}_S(K_S + mZ)) = \frac{mZ \cdot (K_S + mZ)}{2} + 1 = \frac{m(m+1)}{2}Z^2 - \overline{g}m + 1.$$

From the exact sequence of sheaves

$$0 \to \mathcal{O}_S(K_S + mZ) \to \mathcal{O}_S((m+1)Z) \to \mathcal{O}_D((m+1)K_D) \to 0$$

we obtain

$$P_{m+1}[D] = \dim H^0(S, \mathcal{O}_S(K_S + mZ)) + \dim H^0(D, \mathcal{O}_D((m+1)K_D))$$

If $m \geq 2$ and g > 1 then $H^0(D, \mathcal{O}_D((m+1)K_D) = 0$; hence,

$$P_{m+1}[D] = \frac{m(m+1)}{2}Z^2 + \overline{g}(m+1) + 1.$$

If $m \geq 2$ and g = 1 then $H^0(D, \mathcal{O}_D((m+1)K_D) = \mathbf{C}$; hence,

$$P_{m+1}[D] = \frac{m(m+1)}{2}Z^2 + 2,$$

 $P_2[D] = Z^2 + 2.$

Here.

$$Z^2 = (K_S + D)^2 = 4\overline{g} + K_S^2 - D^2.$$

Later, it will be shown that if g = 0 then $P_2[D] = Z^2 + 2$. Note that $P_2[D]$ may be called *bigenus*.

We shall show some relations among $Z^2, Z \cdot D, D^2$ involving the multiplicities of singularities.

4.3 Formula I

Let (S, D) be a non-singular minimal pair which is birationally equivalent to a # minimal pair (Σ_B, C) of type $[\sigma * e, B; \nu_1, \nu_2, \cdots, \nu_r]$. Let Z_0 denote $C + K_0$ and let t_j denote the number of j— ple singular points of the curve C. For simplicity, by \tilde{B} we denote $B\sigma + 2f$.

Definition 3 Define τ_m to be $(\sigma - m)(\tilde{B} - 2m)$.

For example,
$$\tau_1 = (\sigma - 1)(\tilde{B} - 2) = 2g_0$$
.

Lemma 4 For any integers ν, μ ,

$$(\nu Z_0 - (\nu - 1)C) \cdot (\mu Z_0 - (\mu - 1)C) = \tau_{\nu + \mu} - 2(\nu - \mu)^2.$$

In particular, $(\nu Z_0 - (\nu - 1)C) \cdot Z_0 = \tau_{\nu+1} - 2(\nu - 1)^2$ and $(\nu Z_0 - (\nu - 1)C) \cdot (2Z_0 - c) = \tau_{\nu+2} - 2(\nu - 2)^2$.

Proof: By definition.

$$(\nu Z_0 - (\nu - 1)C) \cdot (\mu Z_0 - (\mu - 1)C)$$

$$= ((\sigma - 2\nu)\Delta_0 + (f + \nu B - 2\nu)F_c)((\sigma - 2\mu)\Delta_0 + (f + \mu B - 2\mu)F_c)$$

$$= (\sigma - 2\nu)(\sigma - 2\mu)B + (\sigma - 2\nu)(f + \mu B - 2\mu) + (\sigma - 2\mu)(f + \nu B - 2\nu)$$

$$= (\sigma - \nu - \mu)B\sigma + (\sigma - 2\nu - 2\mu)(f - 2\mu) + (\sigma - 2\nu - 2\mu)(f - 2\nu)$$

$$+ (\mu - \nu)(f - 2\nu) - (\mu - \nu)(f - 2\mu) - 2(\mu - \nu)^2$$

$$= (\sigma - \nu - \mu)(B\sigma + 2f - 2\nu - 2\mu) - 2(\mu - \nu)^2$$

$$= \tau_{\nu + \mu} - 2(\nu - \mu)^2.$$

From $(\nu Z_0 - (\nu - 1)C) \cdot (2Z_0 - C) - 2(\nu Z_0 - (\nu - 1)C) \cdot Z_0 = -(\nu Z_0 - (\nu - 1)C) \cdot C$ and Lemma 4, we get the next result, which would be very useful.

Lemma 5 (Formula I)

1. Letting
$$\widetilde{\delta}(\nu)$$
 be $\sum_{j=2}^{\nu_1} (j-1)(\nu-j)t_j$, we obtain
$$(\nu Z - (\nu-1)D) \cdot Z = (\nu Z_0 - (\nu-1)C) \cdot Z_0 + \widetilde{\delta}(\nu),$$
$$(\nu Z_0 - (\nu-1)C) \cdot Z_0 = \tau_{\nu+1} - 2(\nu-1)^2.$$

2. Letting
$$\widetilde{\delta}_0(\nu)$$
 be $\sum_{j=2}^{\nu_1} j(\nu-j)t_j$, we obtain

$$(\nu Z - (\nu - 1)D) \cdot D = (\nu Z_0 - (\nu - 1)C) \cdot C + \widetilde{\delta}_0(\nu),$$

$$(\nu Z_0 - (\nu - 1)C) \cdot C = \tau_{\nu} - 2\nu^2.$$

3. Letting $\widetilde{\delta}_1(\nu)$ be $\sum_{j=2}^{\nu_1} (\nu - j)^2 t_j$, we obtain

$$(\nu Z - (\nu - 1)D)^2 = (\nu Z_0 - (\nu - 1)C)^2 - \widetilde{\delta}_1(\nu),$$
$$(\nu Z_0 - (\nu - 1)C)^2 = \tau_{2\nu}.$$

By Lemma 4, the next result is obtained.

Corollary 1

$$\nu(\tau_{\mu+1} - 2(\mu - 1)^2) - (\nu - 1)(\tau_{\mu} - 2\mu^2) = \tau_{\nu+\mu} - 2(\nu - \mu)^2,$$

and

$$\nu \tau_{\mu+1} - (\nu - 1)\tau_{\mu} = \tau_{\nu+\mu} - 2\nu^2 + 2\nu.$$

Remark 2 When $\nu_1 \leq 2$,

$$\widetilde{\delta}(2) = \widetilde{\delta}_0(2) = \widetilde{\delta}_1(2) = 0.$$

When $\nu_1 \leq 3$,

$$\widetilde{\delta}(3) = t_2, \quad \widetilde{\delta}_0(3) = 2t_2, \quad \widetilde{\delta}_1(3) = t_2.$$

Corollary 2 When $\nu_1 \leq 2$,

$$(\sigma - 3)(B\sigma + 2f - 6) = 4 - 2g + 2Z^2$$
.

Proof: Applying Remark in the case when $\nu_1 \leq 2$ and $\nu = 2$, we obtain

$$2Z^2 - 2g + 2 = (2Z - D) \cdot Z = \tau_3 - 2,$$

where
$$\tau_3 = (\sigma - 3)(B\sigma + 2f - 6)$$
.

Claim 1 Let $X = \sigma - m$ and $Y = \tilde{B} - 2m$. If $\sigma \ge m$, then $X \le Y$ except for B = 1 and m > 2f.

In the exceptional case, B=1 and $m>2f\geq 4$. Hence, $m\geq 5$.

4.4 mixed plurigenera

If $m \ge a$ then every dim $|mK_S + aD| + 1$ is also a birational invariant as pairs, which is denoted by $P_{m,a}[D]$. They are called **mixed plurigenera**.

If g > 0 then $Z = K_S + D$ is nef and big. Hence, $H^1(S, \mathcal{O}_S(K_S + Z)) = 0$ by a vanishing theorem ;thus

$$P_{2,1}[D] = \dim H^0(S, \mathcal{O}_S(K_S + Z)) = \frac{(K_S + Z) \cdot Z}{2} + 1 = Z^2 - g + 2.$$

By Lemma 3, if g > 0, $\kappa[D] = 2$ and $\sigma \ge 5$ or $d \ge 7$, $2Z - D = D + 2K_S$ is a nef and big divisor. Hence, $H^1(S, \mathcal{O}_S(D + 3K_S)) = H^1(S, \mathcal{O}_S(K_S + 2Z - D)) = 0$; thus

$$P_{3,1}[D] = \dim H^0(S, \mathcal{O}_S(3K_S + D)) = \frac{(3Z - 2D) \cdot (2Z - D)}{2} + 1$$

$$= 3A - \alpha + 1$$

$$= \frac{Q + 2A + D^2 - 4\overline{g}}{2} + 1$$

$$= 3Z^2 + 8 - 7g + D^2.$$

Here $A = \frac{Z \cdot (2Z - D)}{2}$ and $\alpha = D \cdot (2Z - D) = 4\overline{g} - D^2$. Therefore we obtain the next proposition:

Proposition 3 Suppose that $\kappa[D] = 2$ and $\sigma \ge 5$ or $d \ge 7$. Then

$$P_{3,1}[D] = 3Z^2 + 1 - 7\overline{g} + D^2 \ge 0.$$

Theorem 1 (Existence of adjoint of special index 3) Assume that $\sigma \geq$ 6. Then either $|D + 3K_S| \neq \emptyset$ or the type is $[6 * 8, 1; 2^r]$.

Proof: Suppose that $P_{3,1}[D] = 0$. Then $3Z^2 + 1 - 7\overline{g} + D^2 = 0$, i.e., $(3Z - 2D) \cdot (2Z - D) + 2 = 0$. Then $\nu_1 \neq 3$ and we shall show that $\nu_1 \leq 2$. Actually, otherwise $\nu_1 \geq 4$ and so $|D + \nu_1 K_S| \neq \emptyset$. Letting Y be $D + 2K_S$, which is nef and big for $\sigma > 5$.

Taking F from $|D + \nu_1 K_S|$ we have

$$\nu_1(3Z-2D) \sim 3(F-D) + \nu_1D = (\nu_1-3)D + 3F.$$

By computing intersection numbers with Y we obtain

$$\nu_1(3Z-2D) \cdot Y = (\nu_1-3)D \cdot Y + 3F \cdot Y > 0.$$

But $(3Z - 2D) \cdot Y = -2$. This is a contradiction. Therefore, $\nu_1 \leq 2$ has been established and so $\widetilde{\delta}(2) = \widetilde{\delta_0}(2) = 0$.

Letting \tilde{B} be $B\sigma + 2f$, we obtain by a corollary to Lemma 4

$$(3Z - 2D) \cdot (2Z - D) = 3Z \cdot (2Z - D) - 2D \cdot (2Z - D)$$
$$= 3(\tau_3 - 2) - 2(\tau_2 - 8)$$
$$= \tau_5 - 2$$
$$= (\sigma - 5) \cdot (\tilde{B} - 10) - 2.$$

Hence, $(\sigma - 5) \cdot (\tilde{B} - 10) = 0$, which implies $\tilde{B} - 10 = 0$, i.e., $B\sigma + 2f = 10$. Therefore, $\sigma = 6, B = 1, f = 2$.

In particular, $(D+3K_S)\cdot D \geq 0$ if $\sigma \geq 6$ except for the case of $[6*8,1;2^r]$ where r=0,1,2. Indeed, in the case of $[6*8,1;2^r]$, one has $2\omega=(D+3K_S)\cdot D=2(r-3)$.

Theorem 2 Suppose that $\sigma \geq 6$ and g > 0, $\kappa[D] = 2$ where the type is not $[6*8,1;2^r]$, r = 0,1,2. If $(D+3K_S) \cdot D = 0$ then either $D+3K_S \sim 0$ or the type is $[6*8,1;2^3]$.

Proof: First, under the assumption that the type is not $[6*8,1;2^r]$, we shall show that $3Z - 2D = D + 3K_S$ is nef. Actually, otherwise there exists an irreducible curve A such that $(D + 3K_S) \cdot A < 0$. From hypothesis $(D + 3K_S) \cdot D = 0$, we derive $A \neq D$; hence, $D \cdot A \geq 0$.

Since $|D+3K_S| \neq \emptyset$, it follows that $A^2 < 0$ and so $(D+3K_S) \cdot A = D \cdot A + 3K_S \cdot A < 0$. Therefore, A turns out to be an exceptional curve. But since (S,D) is minimal, we obtain $D \cdot A = 2$. Therefore, contracting A into a non-singular point p_0 on a nonsingular surface W, we obtain a proper birational morphism $\mu: S \to W$. Let D_0 be $\mu(D)$, which has a double point at p_0 . Then $D \sim D_0 - 2A$ and $K_S \sim K_W + A$. Putting $Y = D + 3K_S, Y_0 = D_0 + 3K_W$, we obtain $Y \cdot D = 0, Y \sim Y_0 + A$; hence

$$Y \cdot D = (Y_0 + A) \cdot (D_0 - 2A) = Y_0 \cdot D_0 + 2$$
.

Since $|Y| = |Y_0| + A$, it follows that $|Y_0| \neq \emptyset$. Hence, $Y_0 \cdot D_0 \geq 0$. Actually, otherwise, $Y_0 \cdot D_0 < 0$ implies that D_0 is a fixed component of $|Y_0|$ and thus $\emptyset \neq |Y_0| - D_0 = |3K_W|$, a contradiction. Therefore, $Y_0 \cdot D_0 \geq 0$. However, by hypothesis, $Y \cdot D = 0$ and by definition $-2 = Y \cdot D - 2 = Y_0 \cdot D_0 \geq 0$; a contradiction.

Therefore, 3Z - 2D is nef and so $(3Z - 2D)^2 \ge 0$.

If $(3Z-2D)^2>0$ then $(3Z-2D)\cdot D=0$ implies that $D\sim 0$ or $D^2<0$ by Hodge's index theorem . But $0\leq 6\overline{g}=3Z\cdot D=2D^2$; a contradiction. Hence, $(3Z-2D)^2=0$ has been established.

But $0 = (3Z - 2D)^2 = 3(3Z - 2D) \cdot Z - 2(3Z - 2D) \cdot D = 3(3Z - 2D) \cdot Z$. Hence, $(3Z - 2D) \cdot Z = 0$. Recalling that Z is nef and big, we conclude that $3Z - 2D = D + 3K_S \sim 0$.

From the proof of Proposition 2, we derive the following formula:

Proposition 4 Suppose that (S,D) is minimal with g > 0 and $\kappa[D] = 2$. Then

$$P_{m,m-1}[D] = \frac{m(m-1)}{2}Z^2 - \overline{g}(m-1) + 1,$$

$$P_{2,1}[D] = Z^2 - \overline{g} + 1 = Z^2 - g + 2.$$

Since $P_{2,1}[D] \ge 0$, it follows that $Z^2 \ge \overline{g} - 1$ and hence, $P_2[D] = Z^2 + 2\overline{g} + 1 = Z^2 + 2g - 1 \ge 3\overline{g}$.

Moreover, if g > 0, $\kappa[D] = 2$ and $\sigma > 4$ then $W = \frac{3}{2} \times (2Z - D)$ is a nef and big divisor with fractional part. Since $\lceil W \rceil = 3Z - D = 3K_S + 2D$, we derive $H^1(S, \mathcal{O}_S(K_S + 3K_S + 2D)) = 0$; thus

$$P_{4,2}[D] = \dim H^0(S, \mathcal{O}_S(4K_S + 2D))$$

$$= \frac{(4K_S + 2D) \cdot (3K_S + 2D)}{2} + 1$$

$$= (2Z - D) \cdot (3Z - D) + 1$$

$$= 6Z^2 - 10\overline{q} + 1 + D^2.$$

4.5 estimates for bigenera

Suppose that $\sigma \geq 4$. By Lemma 3, we get

$$0 \le (D + 2K_S) \cdot Z = (2Z - D) \cdot Z = 2Z^2 - D \cdot Z = 2(Z^2 - g + 1),$$
$$P_{2,1}[D] = Z^2 + 2 - g.$$

Thus, if g > 1,

$$Z^2 \ge \overline{g}$$
 and $P_2[D] = Z^2 + 2g - 1 = \ge 3g - 2$.

Further, if q > 1, then

$$P_2[D] = Z^2 + 2g - 1 = P_{2,1}[D] + 3g - 3.$$

If g = 1 then

$$P_2[D] = Z^2 + 2 = P_{2,1}[D] + 1.$$

- Suppose that $S = \Sigma_B$ and $\sigma = 3$. Then $g \ge 4$, $D^2 = 3g + 6$ and $Z^2 = 8 - D^2 + 4g - 4 = g - 2$.
- Suppose that $\nu_1 = 1$ and $S = \mathbf{P}^2$. If the type is [d; 1] where $d \geq 4$, then $Z = D + K_S \sim (d-3)H$, H being a line.

Since
$$Z^2 = (d-3)^2$$
 and $g_0 = \frac{(d-1)(d-2)}{2}$, it follows that

$$Z^2 - (g_0 - 2) = \frac{(d-4)(d-5)}{2} \ge 0.$$

Consequently, we obtain the following result.

Theorem 3 Suppose that (S,D) is a relatively minimal pair with $g = g(D) \ge 1$. Letting Z be $K_S + D$, we obtain

- 1. If g > 1 then $P_2[D] = Z^2 + 2g 1 \ge 2g 1$.
- 2. If g > 1 and $P_2[D] = 2g 1$ or g = 1 and $P_2[D] = 2$, then $Z^2 = 0$ and $\kappa[D] = 0$ or 1.
- 3. If $\kappa[D] = 2, g > 1$, then $Z^2 \ge g 2$ and $P_2[D] \ge 3g 3$.
- 4. If $\kappa[D] = 2, g = 1$, then $Z^2 \ge 1$ and $P_2[D] = Z^2 + 2 \ge 3$.
- 5. If $P_2[D] = 3g 3$ and g > 2, then $Z^2 = g 2$ and one of the following cases occurs.
 - (a) $S = \Sigma_B$ and $\sigma = 3$ or
 - (b) $S = \mathbf{P}^2$ and d = 4 or 5. In both cases, $P_{2,1}[D] = 0$.
- 6. $P_{21}[D] = A + 1$, where $A = Z^2 \overline{g}$.
- 7. If q > 1 then $P_2[D] = P_{21}[D] + 3\overline{q}$

In that follows, we shall determine types of #minimal pairs of minimal pairs (S, D) with $P_2[D] = 2g, 2g+1; 3g-2, 3g-1, 3g$, in other words, (S, D) with $Z^2 = 1, 2; g-1, g, g+1$.

First, we consider the case in which the type is [d; 1] where $P_2[D]$ is small.

Proposition 5 Assume that the type is [d; 1].

- 1. If $Z^2 = 1$ then d = 4 and $P_2[D] = 6$.
- 2. Assume that $Z^2 = g 2 + j$ where j = 0, 1, 2, 3. If j = 0 then d = 4, 5. If j = 2 then d = 3, 6. If j = 3 then d = 4, 7.

Proof: If the type is [d; 1], then $Z^2 = (d-3)^2$. Assume that $Z^2 = 1$ or 2. Then d = 4 and $Z^2 = 1$.

Assume that $Z^2 = g - 2 + j, j \ge 0$. Then since 2g - 2 = (d - 1)(d - 2), it follows that (d - 3)(d - 6) = j - 2. Hence, the result follows immediately.

5 relations between A and α

Two more invariants A, α are introduced:

$$A = (2Z - D) \cdot Z/2 = Z^2 - \overline{g}, \alpha = (2Z - D) \cdot D = 4\overline{g} - D^2.$$

Since 2Z - D is nef for $\sigma \ge 4$ and $\kappa[D] = 2$, both A and α are non-negative.

Proposition 6 Suppose that a minimal pair (S, D) with $\kappa[D] = 2$ is derived from a # minimal pair (Σ_B, C) of type $[\sigma * e, B; \nu_1, \dots, \nu_r]$ or (S, D) is just (\mathbf{P}^2, D) of type [d; 1] where $d \geq 4$. we shall show that the next relations between A and α hold.

- 1. When $\sigma = 3$ or d = 4,5,it follows that A = -1 and $\alpha \ge -10$.
- 2. When $\sigma = 4$ or d = 6, it follows that $4A = \alpha$.
- 3. When $\sigma = 5$ or d = 7.8 or the type is $[6*8,1;2^r]$, it follows that $3A = \alpha 1$.
- 4. When $\sigma \geq 6$ where the type is not $[6*8,1;2^r]$, or $d \geq 9$, it follows that $3A > \alpha > A$.

Figure 1: relations between α and A

Proof: First,we consider the case where (S,D) is a pair of the projective plane and a nonsingular curve D of which type is [d;1]. Then $A=\frac{(d-3)(d-6)}{2}$ and $\alpha=d(d-6)$. Hence, $4A-\alpha=(d-6)^2, 3A-\alpha=\frac{(d-6)(d-9)}{2}$. From these, the assertion 1) follows.

Figure 2: relations between α and A

Note that $4A-\alpha=Q=(2Z-D)^2.$ Hence, by Lemma , $4A-\alpha=0$ if and only if $\sigma=4.$

If the type is $[6 * 8, 1; 2^r]$, then $\overline{g} = 19 - r, A = 5, \alpha = 16$.

Assume that $\sigma \geq 6$ and the type is not $[6*8,1;2^r]$. Then $3A - \alpha =$

$$\frac{(2Z-D)\cdot(3Z-2D)}{2}\geq 0.$$

 $\frac{(2Z-D)\cdot(3Z-2D)}{2} \ge 0.$ We shall verify that $A \le \alpha$ under the assumption $\sigma \ge 4$.

Since $K_S = Z - D$, it follows that $(Z - D)^2 = K_S^2$ and $Z^2 + D^2 - 4\overline{g} = K_S^2$. Moreover,

$$A - \alpha = Z^2 + D^2 - 5\overline{g} = K_S^2 - \overline{g}.$$

Case A): $K_S^2 \le -1$.

Then

$$A - \alpha = K_S^2 - \overline{q} < -q < 0.$$

Case B): $K_S^2 \ge 0$.

By Riemann-Roch , $|-K_S| \neq \emptyset$. Hence, $(2Z - D) \cdot (D - Z) \geq 0$, which implies that $2Z^2 + D^2 - 6\overline{g} \leq 0$. Therefore,

$$A - \alpha = Z^2 + D^2 - 5\overline{g} \le \overline{g} - Z^2 = -A \le 0.$$

Suppose that $\sigma \geq 4$ and $A - \alpha = 0$.

In case A): we get $g = 0, K_S^2 = -1$. There are many types in this case. But in case B), we get g > 0, $A = \alpha = 0$. Hence, the type is $[4 * 4; 2^r] *$ or [6;1].

6 relations between Ω and ω

Note that $\Omega \geq \omega$ when $\sigma \geq 6$ except for the type $[6*8,1;2^r]$. Indeed, except for the type $[6*8,1;2^r]$, since $|3Z-2D| \neq \emptyset$ and 2Z-D is nef, we see that $(3Z - 2D) \cdot (2Z - D) \ge 0$ and $(3Z - 2D) \cdot (2Z - D) = 2(3Z - 2D) \cdot Z - 2D$ $(3Z - 2D) \cdot D = 2\Omega - 2\omega$.

6.1 Case $\nu_1 \leq 3$

Under the assumption that $\nu_1 \leq 3$ and $\sigma \geq 6$, we shall show that $\Omega \leq 3\omega$ provided that the type is not $[6*8,1;2^r]$.

By definition,

$$3\omega - \Omega = \frac{(\sigma - 1)(\tilde{B} - 2) - 50}{2} + 2t_2 = g_0 - 25 + 2t_2.$$

It is easy to check that $(\sigma - 1)(\tilde{B} - 2) \geq 50$, whenever the type is not $[6*8,1;2^r]$. Hence,

$$3\omega \geq \Omega$$
.

Figure 3: relations between ω and Ω

Figure 4: relations between ω and Ω , $\sigma > 2$

Note that if $3\omega = \Omega$ then the type is $[6*6; 3^{t_3}, 2^{t_2}]$. Hence, $\omega = \Omega = 0$. Except for these cases, $3\omega - \Omega \ge 2$.

Thus defining Υ to be $3\omega - \Omega$, we shall show that $\Upsilon \geq 2$.

6.2 Case $\nu_1 > 4$

From $K_S^2 = (Z - D)^2 = Z^2 - 4\overline{g} + D^2 = K_S^2 \le -1$, it follows that

$$\Omega + \overline{g} - 3\omega = 3K_S^2 \le -3.$$

Hence, $\Upsilon = 3\omega - \Omega = \overline{g} - 3K_S^2$.

We distinguish the following two cases:

Case A):
$$K_S^2 \le -1$$
.
 $\Upsilon = \overline{g} - 3K_S^2 \ge 2$.

Case B): $K_S^2 \ge 0$.

Then since $K_S^2 = r - 8$, it follows that $r \le 8, g > 0$ and $|-K_S| \ne \emptyset$. From $g_0 = (\sigma - 1)(\tilde{B} - 2)/2 \ge (2\nu_1 - 1)^2$, and $-\nu_j(\nu_j - 1) \ge -\nu_1(\nu_1 - 1)$, we get

$$\Upsilon = \overline{g} - 3K_S^2 = \overline{g_0} - \sum_{j=1}^r \nu_j (\nu_j - 1)/2 - 3(8 - r)$$

$$\geq 4\nu_1 (\nu_1 - 1) - r\nu_1 (\nu_1 - 1)/2 - 3(8 - r)$$

$$\geq (8 - r)\nu_1 (\nu_1 - 1)/2$$

$$\geq 3(8 - r)$$

Thus if r < 8 then $\Upsilon > 3$.

Suppose that r=8, namely $K_S^2=0$. Then we shall show $\Upsilon=\overline{g}\geq 2$.

(1) If $\Upsilon = \overline{g} = 0$ then $0 = K_S^2 = D^2 + Z^2$. By Riemann-Roch, $|-K_S| \neq \emptyset$. Hence, $|D - Z| \neq \emptyset$. Since 2Z - D is nef,

$$(D-Z) \cdot (2Z-D) = -2Z^2 - D^2 \ge 0.$$

By $D^2 + Z^2 = 0$, $we get - Z^2 \ge 0$, a contradiction.

(2) If $\overline{g} = 1$ then $0 = K_S^2 = D^2 + Z^2 - 4$. Since 2Z - D is nef,

$$(D-Z) \cdot (2Z-D) = 6 - 2Z^2 - D^2 \ge 0.$$

By $D^2 + Z^2 = 4$, we get $2 - Z^2 \ge 0$. If $2 = Z^2$ then $(2Z - D) \cdot K_S = 0$. By Hodge's index theorem, we obtain $K_S^2 < 0$, a contradiction.

Consequently, $Z^2 = 1$. By $|D + \nu_1 K_S| \neq \emptyset$, we get

$$(D + \nu_1 K_S) \cdot Z = (\nu_1 Z - (\nu_1 - 1)D) \cdot Z \ge 0.$$

Since

$$(\nu_1 Z - (\nu_1 - 1)D) \cdot Z = \nu_1 Z^2 - 2(\nu_1 - 1)\overline{g} = (2 - \nu_1) \ge 0$$

it follows that $\nu_1 = 2$ and so $2 = g = g_0 - r = g_0 - 8$. Hence, $g_0 = 10$. But

$$(\sigma - 3)(\overline{B} - 6) = 4 - 2q + 2Z^2 = 2.$$

Hence, $\sigma = 4, \overline{B} = 8$. Thus $g_0 = (\sigma - 1)(\overline{B} - 2)/2 = 9$.

This contradicts $q_0 = 10$.

Combining the above argument, we establish the following result.

Proposition 7 For minimal pairs (S,D) with $\kappa[D] = 2$ which are derived from # minimal models of type $[\sigma * e, B; \nu_1, \dots, \nu_r]$ or which is (\mathbf{P}^2, D) of type [d; 1], the next relations between Ω and ω hold.

- 1. When $\sigma = 3$, it follows that $\Omega = -g 4$ and $\omega = -9$.
- 2. When the type is [d;1] or ,it follows that $\Omega=(d-3)(d-9)$ and $\omega=\frac{d(d-9)}{2};$ $3\omega-\Omega=\frac{(d+6)(d-9)}{2}.$
- 3. When the type is $[6*8,1;2^r]$, then $\Omega = r-4, \omega = r-3, 4\omega \Omega = 3r-8$.
- 4. When $\sigma \geq 6$ where the type is not $[6*8,1;2^r]$ or $d \geq 9$, it follows that $\Upsilon = 3\omega \Omega \geq 0$. Furthermore, if $\Upsilon = 0$ then $D + 3K_S \sim 0$ and $\omega = \Omega = 0$.
- 5. Under the above condition, if $D + 3K_S \not\sim 0$, then $\Upsilon \geq 2$.

7 curves with $Z^2 = 1$

Second, we shall study pairs (S, D) such that $Z^2 = 1$ where (S, D) is derived from a # minimal pair (Σ_B, C) . Then $Z^2 = 1$. Since $P_{2,1} = Z^2 + 2 - g = 3 - g$, we see that $1 \le g \le 3$.

If g > 1 then $P_2 = Z^2 + 2g - 1 = 2g + 1$ and If g = 1 then $P_2 = Z^2 + 2 = 3$.

7.1 case q = 2, 3

- If g=3, then $P_2[D]=2g=6=3g-3$ and by Theorem 3, $\sigma=3$ or d=4. If $\sigma=g=3$, then f=B=1; thus $e=4, e-\sigma=1$. Applying the transformation $O_-(\Delta_\infty)$, the type becomes [4;1], too. Hence, we conclude that the type of the transformed curve is [4;1].
- If g=2, then $\nu_1\geq 2$ and so

$$0 \le (D + \nu_1 K_S) \cdot Z = \nu_1 Z^2 - 2(\nu_1 - 1)\overline{g} = 2 - \nu_1.$$

Hence, $\nu_1 = 2$; thus $\nu_1 = 2$. Therefore,

$$K_S^2 = 8 - r$$
, $g_0 = g + r$, $D^2 = C^2 - 4r$.

To determine the type, we use the invariant τ_m introduced in the former section.

Applying Corollary 2 to the case in which $Z^2 = 1$, we obtain

$$(\sigma - 3)(\tilde{B} - 6) = 6 - 2g.$$

When g = 2, from $(\sigma - 3)(\tilde{B} - 6) = 2$ it follows that:

$$\sigma - 3 = 1, \quad \tilde{B} - 6 = 2.$$

Thus $\sigma=4$ and then $g_0=9, r=7, K_S{}^2=1, D^2=4$. According to the value of $B=0,1,2,\,f$ becomes 4, 2, 0, respectively. Then the type becomes $[4*4;2^7]$ or its associates.

7.2 case q = 1

If g = 1, then $Z \cdot D = 0$. Since $Z^2 = 1$, we get $Z \cdot (Z - K_S) = 0$, and so $Z \cdot K_S = Z^2 = 1$. Further, $Z^2 = K_S^2 - D^2 = 1$ implies $K_S^2 = 1 + D^2$. In this case, $P_2[D] = 3$.

Claim 2

$$D^2 \le -2$$
.

Actually, suppose that $D^2 \ge -1$. Then $K_S^2 = 1 + D^2 \ge 0$. By Riemann-Roch, dim $|-K_S| \ge K_S^2 \ge 0$. Hence, $Z \cdot -K_S \ge 0$; thus $Z \cdot K_S \le 0$. But by hypothesis, $1 = Z \cdot K_S$; a contradiction.

7.3 Formula II

For a # minimal pair (Σ_B, C) , letting t_j denote the number of j- ple singular points of the curve C, define

 ρ_{ν_1} to be $(D+2K_S)\cdot (D+\nu_1K_S)$ and ζ_{ν_1} to be $\sum_{j=3}^{\nu_1-1}(\nu_1-j)(j-2)t_j$. Then

$$\rho_{\nu_1} = (C + 2K_0) \cdot (C + \nu_1 K_0) + \zeta_{\nu_1}.$$

Since

$$\rho_{\nu_1} = (D + 2K_S) \cdot D + \nu_1(D + 2K_S) \cdot K_S$$

it follows that $(D+2K_S)\cdot D=(2Z-D)\cdot D=4\overline{g}-D^2$, which we denote by α and that $(D+2K_S)\cdot K_S/2=D\cdot (Z-D)/2+K_S^2=\overline{g}-D^2/2+8-r$, which we denote by ξ_0 and hence, $\rho_{\nu_1}=2\nu_1\xi_0+\alpha$.

Replacing $B\sigma + 2f$ by \tilde{B} and $\sigma - 2\nu_1$ by p where $p \geq 0$, respectively, we obtain

$$(C + 2K_0) \cdot (C + \nu_1 K_0) = (C + 2K_0) \cdot (C + \frac{\sigma - p}{2} K_0)$$
$$= (C + 2K_0) \cdot (C + \frac{\sigma}{2} K_0) - \frac{p}{2} (C + 2K_0) \cdot K_0).$$

Since

$$C + 2K_0 \sim (\sigma - 4)\Delta_0 + (f + 2B - 4)F_c,$$

$$C + \frac{\sigma}{2}K_0 \sim (\frac{\tilde{B}}{2} - \sigma)F_c$$

it follows that

$$(C+2K_0)\cdot (C+\frac{\sigma}{2}K_0)=(\sigma-4)(\frac{\tilde{B}}{2}-\sigma),$$

which is denoted by $-\eta$, and that

$$(C+2K_0)\cdot K_0 = 16 - 2\sigma - \tilde{B}.$$

Thus letting $\tilde{\sigma}$ be $\sigma + \frac{\tilde{B}}{2} - 8$, we obtain $(C + 2K_0) \cdot (C + \nu_1 K_0) = -\eta + \tilde{\sigma}p$ and therefore,

$$\zeta_{\nu_1} = (D + 2K_S) \cdot (D + \nu_1 K_S) - (C + 2K_0) \cdot (C + \nu_1 K_0)$$
$$= \eta + 2\nu_1 \xi_0 + \alpha - \tilde{\sigma} p = \eta + \sigma \xi_0 + \alpha - (\xi_0 + \tilde{\sigma}) p.$$

Letting

$$\xi_2 = \xi_0 + \tilde{\sigma} = \sigma + f - 8 + \frac{B\sigma}{2} + \xi_0,$$

we get

Proposition 8

$$\zeta_{\nu_1} = \eta + \sigma \xi_0 + \alpha - \xi_2 p.$$

Corollary 3 Assume that $\sigma \geq 4$.

1. If
$$B \neq 1$$
 then $\eta = (\sigma - 4)(\sigma - f - \frac{B\sigma}{2}) \leq 0$.

2. If
$$B = 1$$
 then $\eta \leq \frac{(\sigma - 4)p}{2}$.

Moreover,
$$\eta - \xi_2 p \le (\frac{D^2}{2} + r - g - 1 - f - \sigma)p$$
.

Proof of 2): Since $f \ge \nu_1 = \frac{\sigma - p}{2}$, it follows that $\sigma - f - \frac{B\sigma}{2} = \frac{\sigma}{2} - f \le \frac{p}{2}$. Hence, $\eta \le \frac{(\sigma - 4)p}{2}$.

7.4 sharper estimate

Letting $\tilde{\eta} = \eta - \tilde{\sigma}p$, we get

$$\eta = (\sigma - 4)(\sigma - \frac{\tilde{B}}{2})
= 2(\nu_1 - 2)(\sigma - \frac{\tilde{B}}{2}) + p(\sigma - \frac{\tilde{B}}{2})
= 2(\nu_1 - 2)(2\nu_1 - \frac{\tilde{B}}{2}) + p(\sigma - \frac{\tilde{B}}{2}) + 2p(\nu_1 - 2)$$

and

$$\tilde{\eta} = \eta - \tilde{\sigma}p = 2(\nu_1 - 2)(2\nu_1 - \frac{\tilde{B}}{2}) + p(4 + 2\nu_1 - \tilde{B})$$

= $-2(\nu_1 - 2)\gamma_1 + \tilde{A}p$,

where $\gamma_1 = (B-2)\nu_1 + f$ and $\tilde{A} = 2f - 4 - 2\nu_1 + B(\sigma + \nu_1 - 2)$. Then we obtain

$$\tilde{\eta} = -2(\nu_1 - 2)\gamma_1 - \tilde{A}p \le -\tilde{A}p.$$

Now assume that $p \ge 1$ and $\nu_1 \ge 3$. Then since $\tilde{A} = B(\nu_1 + \sigma - 2) - 4 - 2\nu_1 + 2f$, it follows that

- 1. if B=0 then $\tilde{A}=-4-2\nu_1+2f\geq -4-2\nu_1+2\sigma=-4+2\nu_1+2p\geq 2\nu_1-2$.
- 2. If B = 1 then $\tilde{A} > -4 2\nu_1 + 2f + 2 + 3\nu_1 + p > 3\nu_1 5 > 2\nu_1 3$.
- 3. If $B \ge 2$ then $\tilde{A} \ge 6 4\nu_1 = -4 + 2\nu_1 2 + 2\nu_1 \ge 4\nu_1 6 \ge 2\nu_1 2$.

Furthermore, since $p \ge 1$, it follows that when B = 0, $\gamma_1 = -2\nu_1 + f \ge -2\nu_1 + \sigma = p \ge 1$ and hence, $\tilde{\eta} \le -2(\nu_1 - 2) - \tilde{A}p \le 6 - 4\nu_1$.

Hence, we get the following estimate:

Lemma 6 If $p \ge 1$ and $\nu_1 \ge 3$, then

$$\zeta_{\nu_1} = \tilde{\eta} + 2\nu_1 \xi_0 + \alpha$$

and

$$\tilde{\eta} \le (6 - 4\nu_1 + (\nu_1 - 1)\delta_{1,B})p,$$

 $\le (2 + \delta_{1,B} - 2\nu_1)p.$

7.5 case $D^2 = -2, -3, -4$

Using the formula above, we shall determine the type of pairs (S, D) in the case when $D^2 = -2, -3, -4$, examining the following cases, separately.

• case $\nu_1 \leq 2$. Since $(2Z-D)\cdot Z = 2Z^2 - D\cdot Z = 2Z^2$ and $(2Z-D)\cdot Z = \tau_3 - 2$, it follows that

$$\tau_3 = (\sigma - 3)(B\sigma + 2f - 6) = 2Z^2 + 2.$$

Since $Z^2 = 1$ it follows that $2Z^2 + 2 = 4$ and $\sigma - 3 = 2$ or 1.

- 1. If $\sigma = 5$, then 2f + 5B 6 = 2, which is impossible.
- 2. If $\sigma = 4$, then 2f + 4B 6 = 4; hence, $\tilde{B} = 2f + 4B = 10$ and thus $g_0 = (\sigma 1)(\tilde{B} 2)/2 = 12$. This implies that $r = 11, D^2 = 2 \cdot 4 \cdot 5 4 \cdot 11 = -4$ and the type is $[4 * 5; 2^{11}]$ or its associates where $D^2 = 40 44 = -4$.
- case $\nu_1 = 3$. Then $|D + 3K_S| \neq \emptyset$ and so $(D + 3K_S) \cdot (D + 2K_S) \geq 0$. But $0 < (D + 3K_S) \cdot (D + 2K_S) = (3Z 2D) \cdot (2Z D) = 6 + 2D^2$.

Hence, $D^2 \ge -3$.

When $D^2 = -3$, we get $(D + 3K_S) \cdot (D + 2K_S) = 0$. Since $\nu_1 = 3$, it follows that

$$(D+3K_S)\cdot (D+2K_S) = (C+3K_0)\cdot (C+2K_0) = \tau_5 - 2.$$

From $(\sigma - 5)(\tilde{B} - 10) = \tau_5 = 2$, we obtain $\sigma - 5 = 1$ and $\tilde{B} - 10 = 2$. Hence, $\sigma = 6$ and $B\sigma + 2f = \tilde{B} = 12$. Therefore, the type is $[6*6; 3^{t_3}, 2^{t_2}]$ or their associates. Thus, the virtual genus $g_0 = 25$ and by genus formula

$$t_2 + t_3 = 10$$
, $t_2 + 3t_3 = g_0 - g = 24$.

Hence, $t_2 = 3$, $t_3 = 7$ and the type is $[6 * 6; 3^7, 2^3]$ or its associates. The case when $D^2 = -2$ will be treated in the next section.

• case $\nu_1 \ge 4$ or $D^2 = -2$.

Proposition 9 If $\nu_1 \ge 4$, $Z^2 = 1$ and g = 1, then $Z \cdot K_S = 1$, $D^2 = -2$, r = 9 and $K_S^2 = -1$.

Proof: By hypothesis, $Z \cdot K_S = Z^2 - Z \cdot D = 1 - 2\overline{g} = 1$. From

$$0 \le (2Z - D) \cdot (\nu_1 Z - (\nu_1 - 1)D) = 2\nu_1 + (\nu_1 - 1)D^2$$

it follows that $D^2 \geq -\frac{2\nu_1}{\nu_1-1} \geq -\frac{8}{3}$. Hence, $D^2 \geq -2$. By the Claim, $D^2 = -2$ is derived. Hence, from $D \cdot (D+K_S) = D^2 + D \cdot K_S = 0$, it follows that $D \cdot K_S = 2$. Moreover, $Z \cdot K_S = 1$ implies $1 = Z \cdot K_S = D \cdot K_S + K_S^2 = 2 + K_S^2$; hence, $K_S^2 = -1$ and r = 9.

In that follows, we assume $\nu_1 \geq 3$ and $D^2 = -2, r = 9$. Hence, $\xi_0 = 0, \alpha = 2$. Assume that $p \geq 1$. Then by a sharper estimate,

$$0 \le \zeta_{\nu_1} = 2 + \tilde{\eta} \le 2 + 5 - 3\nu_1 = 7 - 3\nu_1 \le -2.$$

This is a contradiction. Therefore, p=0 and $0 \ge \zeta_{\nu_1} = \eta + 2 \ge 2$.

Since $\eta = -2(\nu_1 - 2)\gamma_1$ where $\gamma_1 = -2\nu_1 + f + \nu_1 B$, we have the next two cases: case (1) $\eta = -2$ and case (2) $\eta = 0$ by $\sigma = 2\nu_1$.

In case (1), it follows that $2\nu_1 - 4 = 2$ and $\gamma_1 = 1$. Then $\sigma = 6, \nu_1 = 3$. Thus $f = 7 - 3B, g_0 = 30$. By genus formula,

$$t_2 + t_3 = 9$$
, $t_2 + 3t_3 = 30 - 1 = 29$.

Thus $2t_3 = 20$; hence, $t_2 < 0$; a contradiction.

In case (2), $\gamma_1 = 0$ and then $\zeta_{\nu_1} = 2$. Thus,

$$2 = \zeta_{\nu_1} = \sum_{j=3}^{\nu_1 - 1} (\nu_1 - j)(j-2)t_j.$$

Hence,

$$2 = (\nu_1 - 3)(t_3 + t_{\nu_1 - 1}) + 2(\nu_1 - 4)(t_4 + t_{\nu_1 - 2}) + \cdots$$

Accordingly, we have the following two cases:

1.
$$\nu_1 - 3 = 1, t_3 = 2,$$

2.
$$\nu_1 - 3 = 2, t_3 + t_4 = 1$$
.

In case (1), $\nu_1 = 4$, $\sigma = 8$, $g_0 = 49$, $t_3 = 2$; hence,

$$t_2 + t_3 + t_4 = 9, t_2 + 3t_3 + 6t_4 = 49 - 1.$$

Thus, $t_2 = 0, t_3 = 2, t_4 = 7, f = 8 - 4BB$ and the type is $[8 * 8; 4^7, 3^2]$ or its associates.

In case (2), $\nu_1 = 5$, $\sigma = 10$, $g_0 = 81$, $t_3 + t_4 = 1$; hence,

$$t_2 + t_3 + t_4 + t_5 = 9, t_2 + 3t_3 + 6t_4 + 10t_5 = 81 - 1.$$

Thus, $3t_5 + t_4 = 23$; a contradiction.

Combining these results, we establish the next result:

Theorem 4 Suppose that $P_2[D] = 2g \ge 2$.

- 1. If g = 3, then $D^2 = 16$ and the type of the curve is [4;1].
- 2. If g = 2, then $D^2 = 4$ and the type is $[4 * 4; 2^7]$ or its associates.
- 3. If g = 1, then
 - (a) if $D^2 = -2$, then the type is $[8 * 8; 4^7, 3^2]$ or its associates.
 - (b) If $D^2 = -3$, then the type is $[6*6;3^7,2^3]$ or its associates.
 - (c) If $D^2 = -4$, then the type is $[4*5;2^{11}]$ or its associates.

The pair defined by the curve $y^{10} = x^2(1-x)^3$ is birationally equivalent to a # minimal pair with type $[4*4;2^7]$ where g=2.

8 curves with $Z^2 = 2$

We shall study pairs (S, D) in the case when $Z^2 = 2$, i.e., $P_{2,1}[D] = Z^2 + 2 - g = 4 - g$. Thus it follows that $4 \ge g$.

8.1 case q = 2, 3, 4

If g > 1 then $P_2[D] = Z^2 + 2g - 1 = 1 + 2g$.

• If g = 4, then $P_2[D] = 9 = 3 \cdot 4 - 3$ and so by Theorem 3, $\sigma = 3$ and the type is [3 * 3; 1] or [3 * 6, 2; 1].

In the other cases, $g \leq 3$ and $\sigma \geq 4$. Moreover, $2 = Z^2 < Z_0^2$. Actually, $Z_0^2 = (\sigma - 2)(\sigma B + 2f - 4) \geq 4$. Hence, $\nu_1 \geq 2$.

- If g = 3, then $7 = P_2[D] = 3 \cdot 3 2$ and so by Theorem 7, the type is $[4 * 4; 2^6]$ or its associates.
- If g = 2, then $Z \cdot D = 2g 2 = 2$ and $2 = Z^2 = Z \cdot D + Z \cdot K_S = 2 + Z \cdot K_S$. Hence, $Z \cdot K_S = 0$ and $K_S^2 = D^2 - 2$, $Q = (2Z - D)^2 = D^2$.

Claim 3 $K_S^2 < 0$.

Proof: Otherwise, $K_S^2 \ge 0$ and so $D^2 = K_S^2 + 2 \ge 2$. By Riemann-Roch, $\dim |-K_S| = K_S^2 \ge 0$. Hence, $(2Z - D) \cdot (-K_S) \ge 0$. From this, it follows that

$$0 \ge (2Z - D) \cdot K_S = (2Z - D) \cdot (Z - D) = 2Z^2 - 3Z \cdot D + D^2 = 4 - 6 + D^2.$$

Hence, $2 \ge D^2$. Therefore, $2 = D^2$. This implies that $(2Z - D) \cdot K_S = 0$. Noting that $Q = (2Z - D)^2 = D^2 = 2$, by Hodge's index theorem, we get $K_S \sim 0$ or $K_S^2 < 0$. But both cases cannot occur, because $K_S \not\sim 0$ and $K_S^2 \ge 0$ by hypothesis.

Since $\nu_1 \geq 2$, it follows that

$$0 \le (\nu_1 Z - (\nu_1 - 1)D) \cdot (2Z - D) = 4 - 2\nu_1 + (\nu_1 - 1)D^2.$$

Hence,

$$D^2 \ge \frac{2\nu_1 - 4}{\nu_1 - 1} = 2 - \frac{2}{\nu_1 - 1}.$$

Suppose that $\nu_1 \geq 4$. Then $D^2 \geq 2$ and so $K_S^2 = D^2 - 2 \geq 0$. This is impossible due to the previous claim. Therefore, $\nu_1 = 2, 3$ and $D^2 = K_S^2 + 2 \leq 1$.

If $\nu_1=3$, then $D^2\geq 2-\frac{2}{\nu_1-1}=1$. By Claim , $D^2=K_S^2+2\leq 1$; thus $D^2=1$. In this case, $K_S^2=-1$ and r=9. Furthermore, $A=Z^2-\overline{g}=1$, $\alpha=4\overline{g}-D^2=3$. Hence, $(3Z-2D)(2Z-D)=6A-2\alpha=0$. But by $\nu_1\leq 3$, $(3Z-2D)(2Z-D)=(3Z_0-2C)(2Z_0-C)=\tau_5-2$. Thus $\tau_5=2$ and so $\sigma=6$, $\tilde{B}=6B+2f=2\sigma=12$, $g_0=25$. By genus formula,

$$t_2 + t_3 = r = 9;$$
 $t_2 + 3t_3 = g_0 - g = 23.$

Immediately, we get $t_2 = 2, 3t_3 = 7$. Hence, the type is $[6*6; 3^7, 2^2]$ or its associates. ¹

If $\nu_1 = 2$, then

$$2 = 4 - 2 = (2Z - D) \cdot Z = \tau_3 - 2$$

hence,

$$(\sigma - 3)(\tilde{B} - 6) = \tau_3 = 4.$$

Then $\sigma=4, \tilde{B}=10.$ Therefore, the type is $[4*5;2^{10}]$ or its associates.

8.2 case q = 1

If g = 1, then $P_2[D] = Z^2 + 2 = 4$ and $Z \cdot D = 2g - 2 = 0$ and $K_S^2 = 2 + D^2$.

$$0 \le (\nu_1 Z - (\nu_1 - 1)D) \cdot (2Z - D) = 4\nu_1 + (\nu_1 - 1)D^2.$$

Hence,

$$D^2 \ge \frac{-4\nu_1}{\nu_1 - 1} = -4 - \frac{4}{\nu_1 - 1}.$$

Claim 4

$$D^2 \le -3$$
.

Actually, if $D^2 \ge -2$ then $K_S^2 = 2 + D^2 \ge 0$. Hence, by Riemann-Roch, $|-K_S| \ne \emptyset$. Since $\sigma \ge 4$, it follows that

$$0 \ge (2Z - D) \cdot K_S = (2Z - D) \cdot (Z - D) = 2Z^2 + D^2 = 4 + D^2.$$

Hence, $-4 \ge D^2$. This contradicts the hypothesis.

¹The author thanks S.Usuda who first noticed the existence of this case.

• Suppose that $\nu_1 \leq 2$. Then applying a corollary to Lemma 3 for $Z^2 = 2$, we obtain

$$(\sigma - 3)(2f + B\sigma - 6) = 6.$$

Thus letting $i = \sigma - 3$ be a divisor of 6, we obtain

$$B(i+3) + 2f - 6 = \frac{6}{i}$$

where i = 1, 2.

- (1) If B = 0, then $2f 6 = \frac{6}{i}$, which implies that $i = 1, \sigma = 4, f = 6$.
- (2) If B = 1, then $i + 3 + 2f 6 = \frac{6}{i}$, $f \ge 2$, which implies that i = 1, 2. Thus when i = 1, we get $\sigma = 4$, f = 4. While i = 2 induces $\sigma = 5$, f = 2.

 (3) If $B \ge 2$, then $B(i + 3) + 2f 6 = \frac{6}{i} \ge 2(i + 3) + 2f 6$, which
- implies that $i = 1, B = 2, \sigma = 4, f = 2$.

Therefore, the type is $[5*7,1;2^{13}]$ or $[4*6;2^{14}]$ or its associates. In the former case, $D^2 = -7$ and in the latter case $D^2 = -8$.

• Suppose that $\nu_1 \ge 3$. Then $D^2 \ge -4 - \frac{4}{\nu_1 - 1} \ge -6$. Moreover, if $\nu_1 \geq 6$, then $D^2 \geq -4$. If $\nu_1 \geq 4$, then $D^2 \geq -5$. In what follows we shall study pairs in the cases : $D^2 = -3, -4, -5, -6$.

8.3 case $D^2 = -3$

Suppose that $D^2 = -3$. Then $K_S^2 = D^2 + 2 = -1$ and so r = 9. Therefore, $\xi_0 = -1 + 3/2 = 1/2$ and $\alpha = 4 - 1 = 3$. By sharper estimate,

$$0 \le \zeta_{\nu_1} = \tilde{\eta} + \nu_1 + 3.$$

If $p \ge 1$ then $\tilde{\eta} \le (5 - 3\nu_1)p$; hence

$$\tilde{\eta} + (\nu_1 + 3)p \le (1 - 3p)\nu_1 + 5p + 3.$$

Suppose that $\nu_1 \geq 4$. Then $p = 1, \nu_1 = 4$. Hence, $\frac{17}{2} - \frac{\sigma}{2} - f \leq 0$. Thus the equalities hold and then $\nu_1 = 4, \zeta_{\nu_1} = t_3 = 0, \sigma = 9, f = 4$; hence, $g_0 = 24 + 36 = 60$. By genus formula,

$$t_2 + t_3 + t_4 = 9, t_3 = 0, t_2 + 3t_3 + 6t_4 = 59.$$

Hence, $5t_4 = 50$, $t_4 = 10 > 9$; a contradiction.

Suppose that $\nu_1 = 3$. Then

$$(3Z-2D)(2Z-D) = (3Z_0-2C)(2Z_0-C) = \tau_5-2, (3Z-2D)(2Z-D) = 6Z^2+2D^2 = 6.$$

Hence, $\tau_5 = 8$. From

$$(\sigma - 5)(\tilde{B} - 10) = \tau_5 = 8$$

it follows that

$$\sigma - 5 = 2$$
, $\tilde{B} - 10 = 4$.

Thus

$$\sigma = 7, \tilde{B} = 14, 7B + 2f = 14.$$

This implies that the type is $[7*7; 3^{t_3}, 2^{t_2}]$ or its associates. Moreover, $g_0 = 36$ and hence, by genus formula,

$$t_2 + t_3 = 9$$
,

$$t_2 + 3t_3 = q_0 - 1 = 35.$$

Thus, $2t_3 = 26$; $t_3 = 13$, $t_2 = -4$, which is a contradiction.

Therefore, p = 0 has been established and so Formula II becomes

$$\zeta_{\nu_1} = \eta + \nu_1 + 3.$$

Supposing that $\eta \neq 0$, we shall derive a contradiction.

Recalling that $\eta = -2(\nu_1 - 2)\gamma_1$, we obtain

$$\zeta_{\nu_1} = \eta + \nu_1 + 3 = -2(\nu_1 - 2)\gamma_1 + \nu_1 + 3.$$

Assume that $\nu_1 \geq 4$. Then from $\zeta_{\nu_1} \geq 0$, it follows that $\gamma_1 = 1$. Hence, $\zeta_{\nu_1} = 7 - \nu_1$. Note that $\gamma_1 = 1$ implies that $\tilde{B} = 2(\nu_1 B + 2f) = 2 + 4\nu_1$. Hence, $g_0 = 2\nu_1(2\nu_1 - 1)$.

Moreover, note that

$$\zeta_{\nu_1} = F(\nu_1) = (\nu_1 - 3)x_1 + 2(\nu_1 - 4)x_2 + \cdots$$

Thus if $\zeta_{\nu_1} \neq 0$, then $\zeta_{\nu_1} \geq \nu_1 - 3$, which implies that $\nu_1 \leq 5$.

• If $\nu_1 = 7$, then $\zeta_{\nu_1} = 0$, $\sigma = 14$ and $-10 = \eta = (\sigma - 4)(\sigma - f - \frac{B\sigma}{2})$. Thus $g_0 = 13 \cdot 14 = 182$, $t_3 = t_4 = t_5 = t_6 = 0$ and moreover,

$$r = t_2 + t_7 = 9$$
, $t_2 + 21t_7 = g_0 - g = 182 - 1 = 181$.

But from this, it follows that $10t_7 = 86$; a contradiction.

• If $\nu_1 = 5$, then $\sigma = 10$ and $\zeta_{\nu_1} = 7 - \nu_1 = 2$. By definition,

$$2 > \zeta_{\nu_1} = 2t_3 + 2t_4$$
.

Hence, $t_3 + t_4 = 1$.

When $t_3 + t_4 = 1$, we get $2 = \zeta_{\nu_1} = \eta + \nu_1 + 3 = \eta + 8$; thus

$$-6 = \eta = (\sigma - 4)(\sigma - f - \frac{B\sigma}{2}) = 6(10 - f - 5B).$$

Hence, 11 = f + 5B and so $g_0 = 90$. Therefore,

$$t_3 + t_4 = 1, t_2 + t_3 + t_4 + t_5 = 9,$$

$$t_2 + 3t_3 + 6t_4 + 10t_5 = 90 - 1 = 89$$
.

Hence, $t_4 + 3t_5 = 26$. But since $t_4 = 0$ or 1, it follows that $3t_5 = 26, 25$; a contradiction.

• If $\nu_1 = 4$, then $\sigma = 8$ and $t_3 = \zeta_{\nu_1} = 7 - \nu_1 = 3$. Then $g_0 = 2 \cdot 4 \cdot 7 = 56$. Hence,

$$t_3 \le 3, t_2 + t_3 + t_4 = 9,$$

$$t_2 + 3t_3 + 6t_4 = 56 - 1 = 55$$
.

Hence, $t_3 = 3$, $t_4 = 8$, $t_2 = -2$; a contradiction.

• If $\nu_1 = 3$, then

$$(3Z-2D)(2Z-D) = (3Z_0-2C)(2Z_0-C) = \tau_5-2, (3Z-2D)(2Z-D) = 6Z^2+2D^2 = 6.$$

Hence, $\tau_5 = 8$. From

$$(\sigma - 5)(\tilde{B} - 10) = \tau_5 = 8$$

it follows that

$$\sigma - 5 = 1, \tilde{B} - 10 = 8.$$

Thus

$$\sigma = 6, \tilde{B} = 18; 6B + 2f = 18.$$

This implies that the type is $[6*9; 3^{t_3}, 2^{t_2}]$ or its associates. Moreover, $g_0 = 40$ and hence, by genus formula,

$$t_2 + t_3 = 9$$
, $t_2 + 3t_3 = 40 - 1 = 39$.

Hence, $t_3 = 15, t_2 = -6$; contradiction. Therefore, $\eta = 0$ is established.

8.3.1 case $\eta = 0$

 $\eta = 0$ implies that if $\sigma > 4$, then $\sigma - f - \frac{B\sigma}{2} = 0$. In this case, $2g_0 = (\sigma - 1)(2f + B\sigma - 2) = 2(\sigma - 1)^2$.

From the definition of ζ_{ν_1} , it follows that

$$\zeta_{\nu_1} = \nu_1 + 3 = (\nu_1 - 3)x_1 + 2(\nu_1 - 4)x_2 + 3(\nu_1 - 5)x_3 + \cdots,$$

where

$$x_1 = t_3 + t_{\nu_1 - 1}, x_2 = t_4 + t_{\nu_1 - 2}, x_3 = t_5 + t_{\nu_1 - 3}, \cdots$$

Define a function F(n) to be $\sum_{p=1}^{\mu} p(n-p-2)x_p$ where $\mu = \left[\frac{n-2}{2}\right], x_p = t_{p+2} + t_{n-p}$.

Then the values of F(n) are $n-3, 2(n-3), 2(n-4), 3(n-5), n-3+2(n-4), \cdots$.

Lemma 7 If
$$p < q \le \frac{n-2}{2}$$
, then $p(n-p-2) < q(n-q-2)$.

Proof:
$$p(n-p-2) - q(n-q-2) = -(p-q)(p+q-(n-2)) < 0$$
.

Hence, when $\zeta_{\nu_1} = \nu_1 + 3$, from $\nu_1 + 3 = F(\nu_1) \ge 2(\nu_1 - 4), 2(\nu_1 - 3)$, it follows that $\nu_1 \le 11$. Thus, we shall study pairs in the following cases according to the value of $\nu_1 \le 11$.

• If $\nu_1 = 11$, then $\sigma = 22, g_0 = 21^2 = 441$ and

$$\nu_1 + 3 = 14 = F(11) = 8x_1 + 14x_2 + 18x_3 + \cdots$$

; thus $x_1 = 0$, $x_2 = 1$. Since $t_3 = t_{10} = 0$, $t_4 + t_9 = 1$, $t_5 = t_8 = 0$, $t_6 = t_7 = 0$, it follows that

$$t_2 + t_4 + t_9 + t_{11} = 9$$
, $t_2 + 6t_4 + 36t_9 + 55t_{11} = 440$.

From this, we get

$$t_2 + t_{11} = 8$$
, $5t_4 + 35t_9 + 54t_{11} = 431$, $35t_9 + 54t_{11} = 431 - 5t_4$.

Then $54t_{11} = 426$, or $54t_{11} = 396$; a contradiction.

• If $\nu_1 = 10$, then

$$13 = \nu_1 + 3 = F(10) = 7x_1 + 12x_2$$

which is impossible.

• If $\nu_1 = 9$, then $\sigma = 18, g_0 = 17^2 = 289$ and

$$12 = F(9) = 6x_1 + 10x_2 + 12x_3$$
.

Hence, here are two cases a) $x_1 = x_2 = 0$, $x_3 = 1$, and b) $x_1 = 2$, $x_2 = x_3 = 0$. In case a), $t_3 = t_8 = 0$, $t_4 = t_7 = 0$, $t_5 + t_6 = 1$.

$$t_2 + t_5 + t_6 + t_9 = 9$$
, $t_2 + 10t_5 + 15t_6 + 36t_9 = 288$.

From these,

$$9t_5 + 14t_6 + 35t_9 = 279$$
, $5t_6 + 35t_9 = 270$, $t_6 + 7t_9 = 54$.

Since $t_6 = 0$ or 1, then $7t_9 = 54$ or 53; a contradiction. In case b), $t_3 + t_8 = 2$, $t_4 = t_5 = t_6 = t_7 = 0$.

$$t_2 + t_3 + t_8 + t_9 = 9$$
, $t_2 + 3t_3 + 28t_8 + 36t_9 = 288$.

From these,

$$2t_3 + 27t_+ 35t_9 = 279$$
, $5t_8 + 7t_9 = 55$.

Since $t_6 = 0$ or 1, 2, then $7t_9 = 55$ or 50,45; a contradiction.

• If $\nu_1 = 8$, then

$$11 = F(8) = 5x_1 + 8x_2 + 9x_3$$
.

There exist no solutions.

• If $\nu_1 = 7$, then $\sigma = 14, g_0 = 13^2 = 169$ and

$$10 = F(7) = 4x_1 + 6x_2$$
.

Then $x_1 = x_2 = 1$; thus $t_3 + t_6 = 1$, $t_4 + t_5 = 1$ and therefore,

$$t_2 + t_3 + t_4 + t_5 + t_6 + t_7 = 9$$
, $t_2 + 3t_3 + 6t_4 + 10t_5 + 15t_6 + 21t_7 = 168$.

Hence,

$$2+5+4t_5+12t_6+20t_7=159$$
, $4t_5+12t_6+20t_7=152$, $t_5+3t_6+5t_7=38$.

Then $t_7 = 7$, $t_2 = 0$, $t_4 = t_6 = 1$, $t_3 = t_5 = 0$. Thus

$$D^2 = 2 \cdot 14 \cdot 14 - 4 \cdot 4 - 6 \cdot 6 - 7 \cdot 7 \cdot 7 = -3$$

The type is $[14 * 14; 7^7, 6, 4]$ or its associates.

• If $\nu_1 = 6$, then $\sigma = 12, g_0 = 11^2 = 121$ and

$$9 = F(6) = 3x_1 + 4x_2$$
.

Thus, $x_1 = 3$, $x_2 = 0$, i.e. $t_4 = 0$, $t_3 + t_5 = 3$ and therefore,

$$t_2 + t_3 + t_5 + t_6 = 9$$
, $t_2 + 3t_3 + 10t_5 + 15t_6 = 120$.

Hence,

$$2t_3 + 9t_5 + 14t_6 = 111$$
, $7t_5 + 14t_6 = 105$; $t_5 + 2t_6 = 15$.

That is, $t_6 = 6$, $t_5 = 3$, $t_2 = t_3 = 0$ and so $D^2 = 2 \cdot 12^2 - 3 \cdot 5^2 - 6 \cdot 6^2 = -3$. The type is $[12 * 12; 6^6, 5^3]$ or its associates.

• If $\nu_1 = 5$, then $\sigma = 10, g_0 = 9^2 = 81$ and

$$8 = F(5) = 2x_1 = 2t_3 + 2t_4$$
.

Then $x_1 = 4$, i.e. $t_3 + t_4 = 4$ and therefore,

$$t_2 + t_3 + t_4 + t_5 = 9$$
, $t_2 + 3t_3 + 6t_4 + 10t_5 = 81 - 1 = 80$,

$$12+5+3t_4+9t_5=80$$
, $3t_4+9t_5=63$; $t_4+3t_5=21$.

But $t_5 \le 5, t_4 \le 4$, which contradicts $t_4 + 3t_5 = 21$.

• If $\nu_1 = 4$, then $\sigma = 8$, $g_0 = 7^2 = 49$ and $\sigma = 7^2 = 49$ and

$$t_2 + t_3 + t_4 = 9$$
, $t_2 + 3t_3 + 6t_4 = 49 - 1 = 48$.

But $5t_4 = 25$; $t_4 = 5$, $t_3 = -1$; a contradiction.

• If $\nu_1 = 3$, then $\sigma = 6$, $g_0 = 5^2 = 25$ and by genus formula

$$t_2 + t_3 = 9$$
, $t_2 + 3t_3 = 25 - 1 = 24$.

But $2t_3 = 24 - 9 = 15$; a contradiction.

8.4 case $D^2 = -4$

Suppose that $D^2 = -4$. Then $K_S^2 = D^2 + 2 = -2$ and so r = 10. $\xi_0 = -1 + 1 = 0$ and $\alpha = 4$. Moreover, $\xi_2 = \sigma + f - 8 + \frac{B\sigma}{2}$, and

$$0 \le \zeta_{\nu_1} = \eta + 4 - \xi_2 p$$
.

If $B \neq 1$, then $\eta \leq 0$ and $0 \leq \zeta_{\nu_1} \leq 4 - \xi_2 p \leq 4 - 6p$. Hence, p = 0.

If
$$B = 1$$
, then $\eta - \xi_2 p \le p(-2 + 10 - \sigma - f - 2) = p(6 - \sigma - f)$.

Supposing that p > 0, we get $\sigma \ge 7$ and $f \ge 3$. Hence, $0 \le \zeta_{\nu_1} = \eta + 4 - \xi_2 p \le 4 - 4p$, which implies that $p = 1, \sigma = 7, f = 3, g_0 = 12 + 21 = 33$. By genus formula, we get

$$t_2 + t_3 = 10$$
, $t_2 + 3t_3 = 33 - 1 = 32$.

Thus $2t_3 = 32 - 10 = 22$; $t_3 = 11 > 10$; a contradiction. Therefore, p = 0 is verified. By the formula, we get

$$0 \le \zeta_{\nu_1} = \eta + 4 \le 4$$
.

Hence, $0 \le \eta + 4$.

8.4.1 case $\eta \neq 0$

If $\eta \neq 0$, then $\eta \leq 4 - \sigma = 4 - 2\nu_1$.

Actually, $\eta = (\sigma - 4)(\sigma - f - B\sigma/2) = (2\nu_1 - 4)(2\nu_1 - f - B\nu_1) < 0$, that is a multiple of $2\nu_1 - 4$.

If $\zeta_{\nu_1} \geq 1$, then $\nu_1 \geq 4$ and so $\sigma \geq 2 \times 4 = 8$. Hence, when $\eta \neq 0$, $-\eta$ is a multiple of $2\nu_1 - 4 \geq 4$; thus $\eta = -4$ and $\zeta_{\nu_1} = 0$.

Therefore, we may assume that $\zeta_{\nu_1} = 0$ and then $\eta = -4$ and $-\eta = (2\nu_1 - 4)(2\nu_1 - f - B\nu_1)$. Hence,

$$4 = -\eta = -(2\nu_1 - 4)(2\nu_1 - f - B\nu_1).$$

Therefore, we have two cases (1) $\nu_1 - 2 = 2, 2\nu_1 - f - B\nu_1 = -1$, (2) $\nu_1 - 2 = 1, 2\nu_1 - f - B\nu_1 = -2$.

In case (1), $\nu_1 = 4$, $t_3 = 0$, $g_0 = 56$. By genus formula,

$$t_2 + t_4 = 10$$
, $t_2 + 6t_4 = 56 - 1 = 55$.

Then $t_2 = 1, t_4 = 9$. The type is $[8 * 9; 4^9, 2]$ or its associates.

In case (2), $\nu_1 = 3$, $g_0 = 35$. By genus formula,

$$t_2 + t_3 = 10$$
, $t_2 + 3t_3 = 35 - 1 = 34$.

Then $2t_3 = 24, t_3 = 12 > 10$; a contradiction.

8.4.2 case $\eta = 0$

Suppose that $\eta = 0$. Then $\zeta_{\nu_1} = 4$ and

$$4 = F(\nu_1) = (\nu_1 - 3)x_1 + 2(\nu_1 - 4)x_2 + \cdots$$

From $4 \ge \nu_1 - 3$, it follows that $\nu_1 \le 7$. Therefore, we examine in the following four cases:

• If $\nu_1 = 7$, then $\sigma = 14, g_0 = 13^2 = 169, 4 = F(7)$. Hence, $t_3 + t_6 = 1$ and $t_4 = t_5 = 0$. Thus,

$$t_2 + t_3 + t_6 + t_7 = 10$$
, $t_2 + 3t_3 + 15t_6 + 21t_7 = 169 - 1 = 168$.

Then

$$t_2 + t_7 = 9$$
, $2t_3 + 14t_6 + 20t_7 = 158$,
 $t_3 + 7t_6 + 10t_7 = 79$, $3t_6 + 5t_7 = 39$, $t_6 \le 1$.

This is impossible.

• If $\nu_1=6$ then $\sigma=12, g_0=11^2=121, \quad 4=F(6)=3x_1+4x_2$. Thus, $x_1=0$ and $x_2=1$; hence, $t_3=t_5=0, t_4=1$ and so

$$t_2 + t_4 + t_6 = 10$$
, $t_2 + 6t_4 + 15t_6 = 121 - 1 = 120$.

Therefore,

$$t_2 + t_6 = 9$$
, $t_2 + 15t_6 = 120 - 6 = 114$.

Thus $14t_6 = 114 - 9 = 105$; a contradiction.

• If $\nu_1 = 5$ then $\sigma = 10, g_0 = 9^2 = 81, 4 = 2x_1$. Thus, $x_1 = 2$; hence, $t_3 + t_4 = 2$.

$$t_2 + t_3 + t_4 + t_5 = 10$$
, $t_2 + 3t_3 + 6t_4 + 10t_5 = 80$.

Hence,

$$t_2 + t_5 = 8$$
, $2t_3 + 5t_4 + 9t_5 = 70$, $t_4 + 3t_5 = 22$.

Finally, $t_2 = t_3 = t_4 = 1, t_5 = 7$. Thus the type is $[10 * 10; 5^7, 4, 3, 2]$ or its associates.

• If $\nu_1 = 4$, then $\sigma = 8, g_0 = 7^2 = 49, \zeta_{\nu_1} = 4$ and $\zeta_{\nu_1} = t_3$, i.e. $t_3 = 4$. Hence,

$$t_2 + t_3 + t_4 = 10$$
, $t_2 + 3t_3 + 6t_4 = 48$.

Hence, $t_2 = 0, t_3 = 4, t_4 = 6$. The type is $[8 * 8; 4^6, 3^4]$ or its associates.

8.5 case $D^2 = -5$

Suppose that $D^2 = -5$. Then $K_S^2 = D^2 + 2 = -3$ and so r = 11. $\xi_0 = 5 + 5/2 + 1 - 11 = -1/2$ and $\alpha = 5$. Moreover, $\xi_2 = \sigma + f + \frac{B\sigma}{2} - \frac{17}{2}$ and

$$0 \le \zeta_{\nu_1} = \eta + 5 - \frac{\sigma}{2} - \xi_2 p.$$

Suppose that $p \geq 1, \nu_1 \geq 3$. Then $\sigma \geq 7$; hence, $\xi_2 \geq 5$.

If $B \neq 1$ then $0 \leq \zeta_{\nu_1} \leq 5 - \frac{\sigma}{2} - 5p < 0$; a contradiction.

If B = 1 then $\eta \le \frac{\sigma - 4}{2}p$ and so

$$0 \le \zeta_{\nu_1} \le 5 - \frac{\sigma}{2} - (\xi_2 - \frac{\sigma - 4}{2})p.$$

But, $\xi_2 - \frac{\sigma - 4}{2} = \sigma + f - \frac{13}{2} - 6 \ge 0$ and

$$5 - \frac{\sigma}{2} - (\xi_2 - \frac{\sigma - 4}{2})p \le 5 - \frac{\sigma}{2} - \sigma + f - \frac{13}{2} \le -2.$$

This implies that p = 0. In particular, $\eta = \sigma - f - \frac{B\sigma}{2} = \frac{\sigma}{2} - f = \nu_1 - f \le 0$. Therefore, in both cases, $\eta \le 0$ and hence,

$$0 \le \zeta_{\nu_1} = \eta - \nu_1 + 5 \le -\nu_1 + 5.$$

• If $\nu_1 = 5$, then $\zeta_{\nu_1} = 0$, $\sigma = 10$, $\eta = 0$. Hence, $t_3 = t_4 = 0$, $g_0 = 81$. By genus formula

$$t_2 + t_5 = 11$$
, $t_2 + 10t_5 = 81 - 1 = 80$.

Hence, $9t_5 = 80 - 11 = 69$; a contradiction.

• If $\nu_1 = 4$, then $\sigma = 8$, $\eta = (\sigma - 4)(\sigma - f - B\sigma/2) = 4(8 - f - 4B) = -1$ or 0. Hence, $\eta = 0$ and thus $\zeta_{\nu_1} = t_3 = 1$, $g_0 = 49$. By genus formula,

$$t_2 + t_3 + t_4 = 11$$
, $t_2 + 3t_3 + 6t_4 = 49 - 1 = 48$.

Hence, $5t_4 = 35, t_4 = 7, t_2 = 3$. The type is $[8 * 8; 4^7, 3, 2^3]$ or its associates.

• If $\nu_1 = 3$ then $\sigma = 6, \zeta_{\nu_1} = 0, \eta = -2$. Hence, $f + 3B = 7; g_0 = 30$. By genus formula,

$$t_2 + t_3 = 11, \quad t_2 + 3t_3 = 29.$$

Hence, $t_3 = 9$ and $t_2 = 2$. The type is $[6 * 7; 3^9, 2^2]$ or its associates.

8.6 case $D^2 = -6$

Suppose that $D^2 = -6$. Then $\nu_1 = 3$, $K_S^2 = D^2 + 2 = -4$ and so r = 12. By the same argument as before, p = 0, $\sigma = 6$ are obtained and so $g_0 = 5(3B + f - 1)$. By genus formula,

$$t_2 + t_3 = 12$$
, $t_2 + 3t_3 = g_0 - 1$.

Hence, $24 \ge 2t_3 = g_0 - 13 = 15B + 5f - 18$, which implies that $t_3 = \frac{15B + 5f}{2} - 9 \le 12$. Therefore, $3B + f \le 8$ and thus the type is $[6*6; 3^6, 2^6]$ or its associates.

Theorem 5 Suppose that $Z^2 = 2$. if g > 1, $P_2[D] = Z^2 + 2g - 1 = 2g + 1$.

- 1. If g = 4, then $D^2 = 18$ and the type is [3 * 3; 1] or [3 * 6, 2; 1].
- 2. If g = 3, then $D^2 = 8$ and the type is $[4 * 4; 2^6]$ or its associates.
- 3. If g=2, then either (1) $D^2=1$ and the type is $[6*6;3^7,2]$ or (2) $D^2=0$ and the type is $[4*5;2^{10}]$ or its associates.
- 4. If g = 1 then $P_2[D] = Z^2 + 2 = 4$.
 - (a) If $D^2 = -3$, then the type is $[14 * 14; 7^7, 6^4]$ or $[12 * 12; 6^6, 5^3]$ or its associates.
 - (b) If $D^2 = -4$, then the type is $[8*8;4^6,3^4]$ or $[8*9;4^9,2]$ or $[10*10;5^7,4,3,2]$ or their associates.
 - (c) If $D^2 = -5$, then the type is $[6*7;3^9,2^2]$ or $[8*8;4^7,3,2^3]$ or their associates.
 - (d) If $D^2 = -6$, then the type is $[6*6; 3^6, 2^6]$ or its associates.
 - (e) If $D^2 = -7$, then the type is $[5*7,1;2^{13}]$.
 - (f) If $D^2 = -8$, then the type is $[4*6; 2^{14}]$ or its associates.

9 curves with $Z^2 = 3$

Assume that $P_2[D] = 3g$. Then $Z^2 = g + 1$ and hence, $g + 1 = Z^2 = K_S^2 - D^2 + 4g - 4$. First, if the type is [d; 1] then $d = 7, g = 15, Z^2 = 16$. Second, assume that (S, D) is derived from a # minimal model.

Defining l to be $4g - D^2$, we obtain $D^2 = 4g - l$ and $K_S^2 = 5 + g - l$. From $K_S^2 = 8 - r$, it follows that r = 3 + l - g. Then by definition,

$$\xi_0 = 4 - \frac{l}{2}, \alpha = l - 4, \xi_2 = \sigma + f - 8 + \frac{B\sigma}{2} + 4 - \frac{l}{2}$$

We shall give an estimate of the magnitude of l.

Lemma 8 If $5 + g \ge l$ then $l \ge 8$.

Proof: By $K_S^2 = 5 + g - l \ge 0$, we have $|D - Z| = |-K_S| \ne \emptyset$. Hence, $(2Z - D) \cdot (Z - D) \le 0$. Therefore,

$$2Z^2 - 3Z \cdot D + D^2 \le 0.$$

Hence,

$$2(g+1) = 2Z^2 \le 6\overline{g} - D^2,$$

and so $8 \le l$.

If $l \leq 6$ then applying the previous lemma, we get $5+g \geq 6 \geq l$ and thus, $l \geq 8$; a contradiction.

If l=7 and $g\geq 2$ then $5+g\geq 7=l$ and hence, $l\geq 8$; a contradiction. Therefore, in the case when l=7, we may assume that g=1. Then $Z^2=2$ and $D^2=-7$. By Theorem 8, the type is $[5*7,1;2^{13}]$.

When $l \geq 8$, we shall consider in the following two cases: A) case $\nu_1 \geq 3$ and B) case $\nu_1 \leq 2$.

9.0.1 A) case $\nu_1 \geq 3$

In order to study the case when $l \geq 8$, we begin with the case in which $\sigma \geq 6$. Then $|3Z-2D| \neq \emptyset$ by Theorem 1 and since 2Z-D is nef, it follows that

$$(3Z - 2D) \cdot (2Z - D) > 0$$

and hence,

$$6Z^2 - 7Z \cdot D + 2D^2 > 0.$$

By

$$6Z^2 - 7Z \cdot D + 2D^2 = 6(g+1) - 14\overline{g} + 2(4g-l) = 20 - 2l,$$

we obtain l < 10; hence, l = 8, 9, 10.

Moreover,

$$0 \le \zeta_{\nu_1} = \eta + \xi_0 \sigma + \alpha - \xi_2 p$$

= $\eta + (4 - \frac{l}{2})\sigma + l - 4 - \xi_2 p$.

To show that p=0, we assume $p\geq 1$. Then $\sigma=p+2\nu_1\geq 7$ and since $l\geq 8,$ it follows that

$$0 \le \zeta_{\nu_1} < \eta + 4\sigma + 4 - \frac{l\sigma - l}{2} + l - \sigma - f - \frac{B\sigma}{2}$$
$$= \eta + 3\sigma - f + \frac{3l - \sigma l}{2} - \frac{B\sigma}{2}.$$

First assume $B \neq 1$. Then by $\sigma \geq 7$, we get

$$0 \le \zeta_{\nu_1} < (3 - \frac{l}{2} - \frac{B}{2})\sigma + \frac{3l}{2} - f$$

$$\le 21 - 2l - \frac{7B}{2} - f.$$

However, since $l \geq 8$, it follows that

$$21 - 2l - \frac{7B}{2} - f \le 5 - \frac{7B}{2} - f \le -2.$$

Second, assume that B=1. Then recalling that $\sigma \geq 7, f \geq 3, B=1,$ we get

$$0 \le \zeta_{\nu_1} \le (4 - \frac{l}{2})\sigma + (l - 4) + \eta - \xi_2 p$$

$$\le (4 - \frac{l}{2})\sigma + (l - 4) + (2 + \frac{l}{2} - f - \sigma)p$$

$$\le (4 - \frac{l}{2})\sigma + (l - 4) + (2 + \frac{l}{2} - f - \sigma)$$

$$= \frac{3l}{2} - 2 - f + (3 - \frac{l}{2})\sigma$$

$$\le \frac{3l}{2} + 21 - 2 - f - \frac{7l}{2}\sigma$$

$$\le 19 - f - 2l \le 0.$$

Hence,

$$0 \le \zeta_{\nu_1} \le 19 - f - 2l \le 0.$$

If $\zeta_{\nu_1} = 0$, then $l = 8, \sigma = 7, p = 1, \nu_1 = 3, \tilde{B} = 13, g_0 = 33$. By genus formula,

$$t_2 + t_3 = r = 11 - g$$
, $t_2 + 3t_3 = r = g_0 - g = 33 - g$.

Hence, $2t_2 = -2g$. This implies that g = 0.

This is a contradiction and thus $p = \sigma - 2\nu_1 = 0$ is checked. Therefore,

$$\zeta_{\nu_1} = \eta + (4 - \frac{l}{2})\sigma + l - 4$$

has been established.

9.1 case $D^2 = 4g - 8$

Then l=8, r=3+l-g=11-g. If g=1 then $Z^2=2, D^2=4g-8=-4$. This case has been already treated in Theorem 5. So we may assume $g \ge 2$. Since $\sigma=2\nu_1$ we get

$$\zeta_{\nu_1} = \eta + 4$$
.

9.1.1 case $\eta = 0$

If $\eta = 0$ then $\sigma - f - B\sigma/2 = 0$ and $\zeta_{\nu_1} = 4$; hence, we obtain the equation:

$$4 = F(\nu_1) = (\nu_1 - 3)x_1 + 2(\nu_1 - 4)x_2 + \cdots$$

Then from $4 \ge \nu_1 - 3$, it follows that $\nu_1 \le 7$.

• If $\nu_1 = 7$ then $x_1 = 1$ and hence, $\sigma = 14, g_0 = 13^2 = 169$ and $t_3 + t_6 = x_1 = 1, t_4 = t_5 = 0$, which yields

$$t_2 + t_3 + t_6 + t_7 = 11 - g, t_2 + 3t_3 + 15t_6 + 21t_7 = 169 - g.$$

Thus

$$t_2+t_7=10-g, 2t_3+14t_6+20t_7=158; 6t_6+10t_7=78, 3t_6+5t_7=39, t_6\leq 1.$$

This is impossible.

• If $\nu_1 = 6$, then $\sigma = 12, g_0 = 11^2 = 121$ and $4 = F(6) = 3x_1 + 4x_2$. Thus, $x_1 = 0, x_2 = 1$; hence, $t_3 = t_5 = 0, t_4 = 1$ and so

$$t_2 + t_4 + t_6 = 11 - g$$
, $t_2 + 6t_4 + 15t_6 = 121 - g$.

Accordingly,

$$5t_4 + 14t_6 = 110.$$

Thus $14t_6 = 110 - 5t_4 = 105$; a contradiction.

• If $\nu_1 = 5$, then $\sigma = 10, g_0 = 9^2 = 81, 4 = F(5) = 2x_1$. Thus, $x_1 = 2$; hence, $t_3 + t_4 = 2$ and therefore,

$$t_2 + t_3 + t_4 + t_5 = 11 - g$$
, $t_2 + 3t_3 + 6t_4 + 10t_5 = 81 - g$.

Hence,

$$2t_3 + 5t_4 + 9t_5 = 70, \quad t_4 + 3t_5 = 22.$$

Then $t_4 = 1, t_3 = 1, t_5 = 7, t_2 = \varepsilon$; thus $g = 2 - \varepsilon$ and the type is $[10 * 10; 5^7, 4, 3, 2^{\varepsilon}]$ or its associates.

• If $\nu_1 = 4$, then $\sigma = 8, g_0 = 7^2 = 49, \zeta_{\nu_1} = 4$ and $\zeta_{\nu_1} = t_3$, i.e. $t_3 = 4$. Hence,

$$t_2 + t_3 + t_4 = 11 - g$$
, $t_2 + 3t_3 + 6t_4 = 49 - g$.

Hence, $2t_3 + 5t_4 = 38$; $t_4 = 6$, $t_2 = 1 - g$. Thus g = 1 and the type is $[8*8; 4^6, 3^4]$ or its associates.

9.1.2 case $\eta \neq 0$

If $\eta \neq 0$ then $\eta = -4, \nu_1 = 3, 4; \zeta_{\nu_1} = 0$ and therefore, we have two cases: $(1)\nu_1 = 3$ and $(2) \nu_1 = 4$.

• If $\nu_1=3$, then from $\eta=-4, \eta=2(\nu_1-2)(4\nu_1-2\nu_1B-f)$, it follows that 3B+f=8 and so $g_0=35$. By genus formula

$$t_2 + t_3 = 11 - g$$
, $t_2 + 3t_3 = 35 - g$.

Hence, $2t_3 = 24$, $t_3 = 12$, $t_2 < 0$; a contradiction.

• If $\nu_1 = 4$, then by the same argument as before, $\zeta_4 = 0$, $t_3 = 0$, (2 - B)4 - f = -1 and $g_0 = 56$. By genus formula

$$t_2 + t_4 = 11 - g$$
, $t_2 + 6t_4 = 56 - g$.

Hence, $5t_4 = 45$; $t_4 = 9$. And hence $t_2 = 2 - g$ and the type is $[8*9; 4^9, 2^{\varepsilon}], g = 2 - \varepsilon$ or its associates, where $D^2 = 4g - 8$.

9.2 case $D^2 = 4q - 9$

Suppose that $D^2 = 4g - 9$. Then l = 9 and r = 12 - g. Therefore,

$$0 \le \zeta_{\nu_1} = \eta - \nu_1 + 5 \le -\nu_1 + 5.$$

• case $\nu_1 = 5$ Then $\zeta_{\nu_1} = 0, \sigma = 10$ and $\eta = 0$. Hence, $t_3 = t_4 = 0$ and $g_0 = 81$. By genus formula

$$t_2 + t_5 = 12 - g$$
, $t_2 + 10t_5 = 81 - g$.

Hence, $9t_5 = 81 - 12 = 69$; a contradiction.

• case $\nu_1 = 4$ Then $\sigma = 8, 0 \le \zeta_{\nu_1} = \eta + 1; -1 \le \eta$. Moreover,

$$\eta = (\sigma - 4)(\sigma - f - B\sigma/2) = 4(8 - f - 4B) = -4, 0.$$

Hence, $\eta = 0$ and thus $\zeta_{\nu_1} = t_3 = 1, g_0 = 49$. By genus formula,

$$t_2 + t_3 + t_4 = 12 - g$$
, $t_2 + 3t_3 + 6t_4 = 49 - g$.

Hence, $5t_4 = 35$, $t_4 = 7$ and $t_2 = 4 - g$. The type is $[8 * 8; 4^7, 3, 2^{4-g}]$ or its associates, where g = 1, 2, 3, 4.

• case $\nu_1 = 3$. Then $\zeta_{\nu_1} = 0$ and $\sigma = 6, \zeta_{\nu_1} = \eta + 2$; thus $\eta = -2$. Hence, f + 3B = 7 and $g_0 = 30$. By genus formula,

$$t_2 + t_3 = 12 - g$$
, $t_2 + 3t_3 = 30 - g$.

Hence, $t_3 = 9, t_2 = 3 - g$. The type is $[6 * 7; 3^9, 2^{3-g}]$ or its associates where g = 1, 2, 3.

9.3 case $D^2 = 4q - 10$

Suppose that $D^2 = 4q - 10$. Then l = 10, r = 13 - q,

$$0 \le \zeta_{\nu_1} = \eta - 2\nu_1 + 6 \le -2(\nu_1 - 3).$$

Hence, $\nu_1 = 3, \sigma = 6$ and $\eta = 0, 3B + f = 6$. Clearly, $g_0 = 25$. By genus formula,

$$t_2 + t_3 = 13 - q$$
, $t_2 + 3t_3 = 25 - q$.

Hence, $t_3 = 6$ and $t_2 = 7 - g$. The type is $[6 * 6; 3^6, 2^{7-g}]$ or its associates, where $g = 1, 2, \dots, 7$.

9.3.1 B) case $\nu_1 \leq 2$

Since $\nu_1 \leq 2$, it follows that

$$4 = 2(q+1) - 2\overline{q} = 2Z^2 - D \cdot Z = (2Z - D) \cdot Z = \tau_3 - 2.$$

Hence, $\tau_3 = 6$. From

$$(\sigma - 3)(2f + B\sigma - 6) = 6,$$

we obtain either (1) $\sigma - 3 = 1, 2f + B\sigma - 6 = 6$ or (2) $\sigma - 3 = 2, 2f + B\sigma - 6 = 3$. case (1) $\sigma = 4, 2f + B\sigma = 12, g_0 = 15$. The type is $[4 * 6; 2^r]$ and its associates, where $g = 15 - r = 1, 2, \dots, 14$ and $D^2 = 4g - 12$.

case (2) $\sigma=5,2f+B\sigma=9,g_0=14$ and the type is $[5*7,1;2^r]$, where g=14-r and $D^2=4g-11$.

Accordingly, we establish the following result:

Theorem 6 Suppose that $P_2[D] = 3g > 1$. Then $Z^2 = g + 1$ and

- case $S = \mathbf{P}^2$. Then the type is [7,1] and $g = 15, D^2 = 49$.
- case $\nu_1 \leq 2$. Then the type is (1) $[4*6;2^r]$ or its associates, where g = 15 r and $D^2 = 4g 12$, or (2) $[5*7,1;2^r]$, where g = 14 r and $D^2 = 4g 11$.
- case $\nu_1 \geq 3$. Then
 - 1. if $5 \ge g \ge 7$ then the type is $[6*6;3^6,2^{7-g}]$ or its associates , where $D^2=4g-10$.
 - 2. If g = 4 then
 - (a) if $D^2 = 7$ then the type is $[8 * 8; 4^7, 3]$ or its associates.
 - (b) If $D^2 = 6$ then the type is $[6*6; 3^6, 2^3]$ or its associates.
 - 3. If g = 3 then
 - (a) if $D^2 = 2$ then the type is $[6*6; 3^6, 2^4]$ or its associates.
 - (b) If $D^2 = 3$ then the type is $[8 * 8; 4^7, 3, 2]$ or $[6 * 7; 3^9]$ or their associates.
 - 4. If q=2 then
 - (a) if $D^2 = 0$ then the type is either $[10 * 10; 5^7, 4, 3]$ or $[8 * 9; 4^9]$ or their associates.

- (b) If $D^2 = -1$ then the type is either $[6*7;3^9,2]$ or $[8*8;4^7,3,2^2]$ or their associates.
- (c) If $D^2 = -2$ then the type is $[6*6; 3^6, 2^5]$ or its associates.
- 5. If g = 1 then
 - (a) if $D^2 = -4$ then the type is $[8 * 8; 4^6, 3^4]$ or $[8 * 9; 4^9, 2]$ or $[10 * 10; 5^7, 4, 3, 2]$ or their associates.
 - (b) If $D^2 = -5$ then the type is $[6*7;3^9,2^2]$ or $[8*8;4^7,3,2^3]$ or their associates.
 - (c) If $D^2 = -6$ then the type is $[6*6; 3^6, 2^6]$ or its associates.

When $\sigma = 3$, the invariants are easily computed:

$$A = Z^2 - \overline{q} = -1, \alpha = \overline{q} - 9, \omega = -9, \Omega = -3 - \overline{q}.$$

Moreover if the type is $[d;1], d \geq 4$, then

$$A = \frac{(d-3)(d-6)}{2}, \alpha = d(d-6), \omega = \frac{d(d-9)}{2}, \Omega = (d-3)(d-9).$$

10 curves with $P_{2,1}[D] = 1$

By Lemma 3, when $\sigma \geq 4$, we see that 2Z-D is nef and so $(2Z-D) \cdot Z \geq 0$. Hence, $2Z^2 \geq D \cdot Z = 2\overline{g}$, i.e. $Z^2 \geq \overline{g}$. Thus we shall study pairs (S,D) with $Z^2 = \overline{g}$. Hence, $(2Z-D) \cdot Z = 0$ and $P_{2,1}[D] = Z^2 - \overline{g} + 1 = 1$; Q = 0. Noting that $\sigma \geq 4$ or $d \geq 6$ for the type [d;1], by Lemma 3, we get $\sigma = 4$ and $2Z - D \sim 0$ or d = 6.

Thus

$$0 \sim 2Z - D = D + 2K_S \sim C + 2K_0 \sim (f - 4 + 2B)F_c$$
.

Hence, f-4+2B=0. Therefore, the type of the curve turns out to be $[4*4;2^r]$ or its associates where $r \leq 7$. The pair is birationally equivalent to a pair of type $[6;2^{r+1}]$. Thus we obtain the following result.

Theorem 7 If $P_{2,1}[D] = 1$, then $A = 0, Z^2 = \overline{g}$ and the type is [6;1] or $[4*4;2^r]$ or its associates where $r \leq 7$.

Corollary 4 Under the assumption $\sigma \geq 4$, $P_{2,1}[D] = A + 1 = 1$ if and only if $2Z \sim D$, i.e. $D + 2K_S \sim 0$.

Proof:

From the formula $P_{2,1}[D] = Z^2 - g + 2$, the result follows immediately.

Definition 4 If the pair (S, D) satisfies that $D + mK_S \sim 0$, then D is said to be an anti m- canonical curve.

The pair defined by $y^{3m} = x^m \prod_{j=1}^m (x-j)$ has the minimal model (S, D) of type $[2m * 3m, 1; m^5]$, which is an anti m- canonical curve for m > 1.

So the theorem states that if $P_2[D] = 3g - 2 > 0$, then the curve D is anti-bicanonical.

11 curves with $P_{2,1}[D] = 2$

Suppose that $P_{2,1}[D] = 2$. Then $Z^2 = g$ and $Z \cdot D = 2g - 2$. First, consider the case in which $\nu_1 \leq 2$.

Lemma 9 If $Z^2 = g + i$ where the type is [d; 1], then (d-3)(d-6) = 2i + 2.

Proof: By
$$Z^2 = (d-3)^2$$
, $Z \cdot D = d(d-3) = 2g-2$, we obtain $d(d-3) = 2g-2 = 2(d-3)^2 - 2i - 2$ and then $(d-3)(d-6) = 2i + 2$.

In the case when i=0, there exists no solutions. Thus we consider the case where (S,D) is derived from a # minimal pair (σ_B,C) . Applying Corollary 2 to the case $Z^2=g$, we obtain

$$\tau = (\sigma - 3)(\tilde{B} - 6) = 4.$$

Hence, $\sigma - 3$ takes one of the following values 1, 2.

- (1) If $\sigma = 5$, then 5B + 2f = 8, which is impossible.
- (2) If $\sigma = 4$, then 4B + 2f = 10. Then (f, B) = (5, 0), (3, 1), (1, 2). $g_0 = 12 \ge r \ge 1$. Thus the type is $[4 * 5; 2^r]$, where g = 12 r.

Second, consider the case in which $\nu_1 \geq 3$. By $|D+3K_S| \neq \emptyset$, we get $(3Z-2D)\cdot Z = (D+3K_S)\cdot Z \geq 0$ and $(3Z-2D)\cdot Z = 3Z^2-2Z\cdot D = 3g-4g+4$; thus $g \leq 4$.

• Suppose that g = 4. Then $(3Z - 2D) \cdot Z = 0$. Since Z is nef and big, by Hodge's index theorem, we get $(3Z - 2D)^2 < 0$ or $3Z \sim 2D$. However,

$$0 \ge (3Z - 2D) \cdot (3Z - 2D) = (3Z - 2D) \cdot (-2D),$$

$$0 \le (3Z - 2D) \cdot (2Z - D) = (3Z - 2D) \cdot (-D).$$

Hence, $(3Z-2D)\cdot(-D)=0$. Thus, $3Z\sim 2D$, i.e. $D\sim -3K_S$. Since $D + \nu_1 K_S \sim (\nu_1 - 3) K_S$ and $\kappa(S, K_S) = -\infty$, it follows that $\nu_1 = 3$. Therefore,

$$0 \sim D + 3K_S \sim C + 3K_0 + \sum_{j=1}^{r} (3 - \nu_j) E_j.$$

Hence, $\nu_1 = \cdots = \nu_r = 3$ and

$$0 \sim C + 3K_0 \sim (\sigma - 6)\Delta_{\infty} + (e - 6 - 3B)F_c$$
.

Thus $\sigma = 6, e - 6 - 3B = 0$; i.e. e = 6 + 3B. Therefore, $g_0 = 25, 25 - 3t_3 = 4$; hence, $t_3 = 7$. This implies that the type is $[6*6;3^7]$ or its associates.

• Suppose that g=3. Then $D \cdot Z=4$, $(3Z-2D) \cdot Z=1$, $(3Z-2D) \cdot D=$ $2(6-D^2)$. Since 2Z-D is nef, it follows that

$$(3Z - 2D) \cdot (2Z - D) \ge 0$$
, $(3Z - 2D) \cdot (2Z - D) = 2 - 12 + 2D^2$.

Hence, $D^2 > 5$.

On the other hand, $3 = Z^2 = K_S^2 - D^2 + 8$; thus $K_S^2 = D^2 - 5 \ge 0$. Hence, by Riemann-Roch, we get $|-K_S| \neq \emptyset$ and so

$$0 \le (-K_S) \cdot (2Z - D) = (D - Z) \cdot (2Z - D) = 6 - D^2.$$

Thus $D^2 \leq 6$. Combining the previous results with $D^2 \geq 5$, we obtain $D^2 = 5, 6.$

case $D^2 = 6$ 11.1

Then $K_S^2 = 1, r = 7$; thus $\xi_0 = 7 - 3 + 3 - 7 = 0$, $\alpha = 8 - 6 = 2$, and $\xi_2 = \sigma + f - 1 + \frac{B\sigma}{2} + g - \frac{D^2}{2} - r = \sigma + f + \frac{B\sigma}{2} - 8$. We shall verify that p = 0. Actually, suppose that $p \ge 1$.

$$\sigma + f - 8 + \frac{B\sigma}{2} \ge 8$$
, provided

 $\sigma + f - 8 + \frac{B\sigma}{2} \ge 8$, provided If $B \ne 1$ then $\xi_2 \ge 6, 0 \le \zeta_{\nu_1} \le 2 - 6p < 0$; a contradiction.

If B = 1 then $\eta - \xi_2 p \le (3 + 7 - 4 - f - \sigma)p \le -4p$. Thus $0 \le \zeta_{\nu_1} < 1$ 2-4p<0; a contradiction.

Therefore, p = 0 and so by the formula,

$$0 \le \zeta_{\nu_1} = \eta + 2 \le 2$$
.

If $\eta = 0$ then

$$2 = (\nu_1 - 3)x_1 + 2(\nu_1 - 4)x_2 + \cdots$$

We have the following cases:

1) $\nu_1 - 3 = 2, x_1 = t_4 + t_3 = 1$. Then $\nu_1 = 5, \sigma = 10$ and $g_0 = 81$. Moreover,

$$t_2 + t_3 + t_4 + t_5 = 7$$
, $t_2 + 3t_3 + 6t_4 + 10t_5 = 81 - 3 = 78$.

Thus $t_2 + t_5 = 6,3t_4 + 9t_5 = 69$; hence, $t_4 + 3t_5 = 23$. A contradiction.

2)
$$\nu_1 - 3 = 1, t_3 = 2$$
. Then $\nu_1 = 4, \sigma = 8$ and $g_0 = 49$. Further,

$$t_2 + t_3 + t_4 = 7$$
, $t_2 + 3t_3 + 6t_4 = 49 - 3 = 46$.

Thus $t_2 + t_4 = 5, 2t_3 + 5t_4 = 39$; hence, $5t_4 = 39 - 4 = 35, t_4 = 7$; a contradiction.

If $\eta < 0$ then by $\nu_1 \geq 3$, we see that $\sigma - 4 \geq 2$ and so $\eta = -2, \zeta_{\nu_1} = 0$. Then 6 - f - 3B = -1. Hence, $g_0 = 30$. But $t_2 + t_3 = 7$ and $t_2 + 3t_3 = 7$ 30 - 3 = 27; a contradiction.

11.2 case $D^2 = 5$

Then $K_S^2 = 0$ and r = 8; thus $\xi_0 = 7 - 5/2 + 3 - 8 = -1/2$, $\alpha = 8 - 5 = 0$ $3, \xi_2 = \sigma + f - 8 + \frac{B\sigma}{2} - \frac{1}{2}.$ Suppose that $p \ge 1$.

Since $\nu_1 \geq 3$, it follows that $\xi_2 \geq \frac{3}{2}$. If $B \neq 1$ then $0 \leq \zeta_{\nu_1} \leq 3 - \frac{\sigma}{2} - \frac{3}{2} < 0$; a contradiction.

If B=1 then $0 \le \zeta_{\nu_1} \le 3 - \frac{\bar{\sigma}}{2} - \frac{\bar{7}}{2} < 0$; a contradiction. Therefore, p=0 and so by the formula, we obtain

$$0 \le \zeta_{\nu_1} = \eta - \frac{\sigma}{2} + 3 \le 3 - \nu_1.$$

Thus $\nu_1 = 3, \sigma = 6, \zeta_{\nu_1} = 0, g_0 = 25$; hence,

$$t_2 + t_3 = 8$$
, $t_2 + 3t_3 = 25 - 3 = 22$.

Then $t_2 = 1, t_3 = 7$ and the type is $[6 * 6; 3^7, 2]$ or its associates.

- Suppose that g = 2. Then $Z^2 = 2$ and the type is $[4 * 5; 2^{10}]$ or its associates, where $D^2 = 4g 8 = 0$. This case has been already treated in Theorem 5.
 - Suppose that g=1. Then $Z^2=1$ and
 - 1. if $D^2 = -4$ then the type is $[4*5;2^{11}]$ or its associates, where $D^2 = 4g 8 = -4$.
 - 2. If $D^2 = -3$ then the type is $[6*6;3^7,2^3]$ or its associates , where $D^2 = 4q 7 = -3$.
 - 3. If $D^2=-2$ then the type is $[8*8;4^7,3^2]$ or its associates , where $D^2=4g-6=-2$.

These case have been already treated in Theorem 5.

Theorem 8 Suppose that $P_{2,1}[D] = 2$. Then $Z^2 = g$ and

- 1. if $D^2 = 4g 8$, then the type is $[4 * 5; 2^r]$ or its associates, where g = 12 r > 0.
- 2. If $D^2 = 4g 7$, then the type is $[6*6;3^7,2^{\varepsilon}]$ or its associates, where $g = 4 \varepsilon > 0$.
- 3. If $D^2 = 4g 6$, then the type is $[8 * 8; 4^7, 3^2]$ or its associates.

12 curves with $P_{2,1}[D] = 3$

Assume that $P_{2,1}[D] = 3$. Then $Z^2 = g + 1$ and hence, First, if the type is [d;1] then $d = 7, g = 15, Z^2 = 16$. Second, assume that (S,D) is derived from a #- minimal model.

Defining l to be $4g - D^2$, we obtain $D^2 = 4g - l$ and $K_S^2 = 5 + g - l$. From $K_S^2 = 8 - r$, it follows that r = 3 + l - g. Then by definition,

$$\xi_0 = 4 - \frac{l}{2}, \alpha = l - 4, \xi_2 = \sigma + f - 8 + \frac{B\sigma}{2} + 4 - \frac{l}{2}$$

We shall give an estimate of the magnitude of l.

Lemma 10 If $5 + g \ge l$ then $l \ge 8$.

Proof: By $K_S^2 = 5 + g - l \ge 0$, we have $|D - Z| = |-K_S| \ne \emptyset$. Hence, $(2Z - D) \cdot (Z - D) \le 0$. Therefore,

$$2Z^2 - 3Z \cdot D + D^2 \le 0.$$

Hence,

$$2(g+1) = 2Z^2 \le 6\overline{g} - D^2,$$

and so $8 \le l$.

If $l \leq 6$ then applying the previous lemma, we get $5+g \geq 6 \geq l$ and thus, $l \geq 8$; a contradiction.

If l=7 and $g \ge 2$ then $5+g \ge 7=l$ and hence, $l \ge 8$; a contradiction.

Therefore, in the case when l=7, we may assume that g=1. Then $Z^2=2$ and $D^2=-7$. By Theorem 8, the type is $[5*7,1;2^{13}]$.

When $l \geq 8$, we shall consider in the following two cases: A) case $\nu_1 \geq 3$ and B) case $\nu_1 \leq 2$.

12.0.1 A) case $\nu_1 \geq 3$

In order to study the case when $l \geq 8$, we begin with the case in which $\sigma \geq 6$. Then $|3Z-2D| \neq \emptyset$ by Theorem 1 and since 2Z-D is nef, it follows that

$$(3Z - 2D) \cdot (2Z - D) > 0,$$

and hence,

$$6Z^2 - 7Z \cdot D + 2D^2 \ge 0.$$

By

$$6Z^{2} - 7Z \cdot D + 2D^{2} = 6(g+1) - 14\overline{g} + 2(4g-1) = 20 - 2l,$$

we obtain $l \leq 10$; hence, l = 8, 9, 10.

Moreover,

$$\begin{split} 0 &\leq \zeta_{\nu_1} = \eta + \xi_0 \sigma + \alpha - \xi_2 p \\ &= \eta + (4 - \frac{l}{2})\sigma + l - 4 - \xi_2 p. \end{split}$$

To show that p=0, we assume $p\geq 1$. Then $\sigma=p+2\nu_1\geq 7$ and since $l\geq 8$, it follows that

$$0 \le \zeta_{\nu_1} < \eta + 4\sigma + 4 - \frac{l\sigma - l}{2} + l - \sigma - f - \frac{B\sigma}{2}$$
$$= \eta + 3\sigma - f + \frac{3l - \sigma l}{2} - \frac{B\sigma}{2}.$$

First assume $B \neq 1$. Then by $\sigma \geq 7$, we get

$$0 \le \zeta_{\nu_1} < (3 - \frac{l}{2} - \frac{B}{2})\sigma + \frac{3l}{2} - f$$

$$\le 21 - 2l - \frac{7B}{2} - f.$$

However, since $l \geq 8$, it follows that

$$21 - 2l - \frac{7B}{2} - f \le 5 - \frac{7B}{2} - f \le -2.$$

Second, assume that B=1. Then recalling that $\sigma \geq 7, f \geq 3, B=1,$ we get

$$0 \le \zeta_{\nu_1} \le (4 - \frac{l}{2})\sigma + (l - 4) + \eta - \xi_2 p$$

$$\le (4 - \frac{l}{2})\sigma + (l - 4) + (2 + \frac{l}{2} - f - \sigma)p$$

$$\le (4 - \frac{l}{2})\sigma + (l - 4) + (2 + \frac{l}{2} - f - \sigma)$$

$$= \frac{3l}{2} - 2 - f + (3 - \frac{l}{2})\sigma$$

$$\le \frac{3l}{2} + 21 - 2 - f - \frac{7l}{2}\sigma$$

$$< 19 - f - 2l < 0.$$

Hence,

$$0 \le \zeta_{\nu_1} \le 19 - f - 2l \le 0.$$

If $\zeta_{\nu_1} = 0$, then $l = 8, \sigma = 7, p = 1, \nu_1 = 3, \tilde{B} = 13, g_0 = 33$. By genus formula,

$$t_2 + t_3 = r = 11 - q$$
, $t_2 + 3t_3 = r = q_0 - q = 33 - q$.

Hence, $2t_2 = -2g$. This implies that g = 0.

This is a contradiction and thus $p = \sigma - 2\nu_1 = 0$ is checked. Therefore,

$$\zeta_{\nu_1} = \eta + (4 - \frac{l}{2})\sigma + l - 4$$

has been established.

12.1 case $D^2 = 4g - 8$

Then l=8, r=3+l-g=11-g. If g=1 then $Z^2=2, D^2=4g-8=-4$. This case has been already treated in Theorem 5. So we may assume $g \ge 2$. Since $\sigma=2\nu_1$ we get

$$\zeta_{\nu_1} = \eta + 4$$
.

12.1.1 case $\eta = 0$

If $\eta = 0$ then $\sigma - f - B\sigma/2 = 0$ and $\zeta_{\nu_1} = 4$; hence, we obtain the equation:

$$4 = F(\nu_1) = (\nu_1 - 3)x_1 + 2(\nu_1 - 4)x_2 + \cdots$$

Then from $4 \ge \nu_1 - 3$, it follows that $\nu_1 \le 7$.

• If $\nu_1 = 7$ then $x_1 = 1$ and hence, $\sigma = 14, g_0 = 13^2 = 169$ and $t_3 + t_6 = x_1 = 1, t_4 = t_5 = 0$, which yields

$$t_2 + t_3 + t_6 + t_7 = 11 - g, t_2 + 3t_3 + 15t_6 + 21t_7 = 169 - g.$$

Thus

$$t_2+t_7=10-g, 2t_3+14t_6+20t_7=158; 6t_6+10t_7=78, 3t_6+5t_7=39, t_6\leq 1.$$

This is impossible.

• If $\nu_1 = 6$, then $\sigma = 12, g_0 = 11^2 = 121$ and $4 = F(6) = 3x_1 + 4x_2$. Thus, $x_1 = 0, x_2 = 1$; hence, $t_3 = t_5 = 0, t_4 = 1$ and so

$$t_2 + t_4 + t_6 = 11 - g$$
, $t_2 + 6t_4 + 15t_6 = 121 - g$.

Accordingly,

$$5t_4 + 14t_6 = 110$$
.

Thus $14t_6 = 110 - 5t_4 = 105$; a contradiction.

• If $\nu_1 = 5$, then $\sigma = 10, g_0 = 9^2 = 81, 4 = F(5) = 2x_1$. Thus, $x_1 = 2$; hence, $t_3 + t_4 = 2$ and therefore,

$$t_2 + t_3 + t_4 + t_5 = 11 - q$$
, $t_2 + 3t_3 + 6t_4 + 10t_5 = 81 - q$.

Hence,

$$2t_3 + 5t_4 + 9t_5 = 70, \quad t_4 + 3t_5 = 22.$$

Then $t_4 = 1, t_3 = 1, t_5 = 7, t_2 = \varepsilon$; thus $g = 2 - \varepsilon$ and the type is $[10 * 10; 5^7, 4, 3, 2^{\varepsilon}]$ or its associates.

• If $\nu_1 = 4$, then $\sigma = 8, g_0 = 7^2 = 49, \zeta_{\nu_1} = 4$ and $\zeta_{\nu_1} = t_3$, i.e. $t_3 = 4$. Hence,

$$t_2 + t_3 + t_4 = 11 - g$$
, $t_2 + 3t_3 + 6t_4 = 49 - g$.

Hence, $2t_3 + 5t_4 = 38$; $t_4 = 6$, $t_2 = 1 - g$. Thus g = 1 and the type is $[8 * 8; 4^6, 3^4]$ or its associates.

12.1.2 case $\eta \neq 0$

If $\eta \neq 0$ then $\eta = -4, \nu_1 = 3, 4; \zeta_{\nu_1} = 0$ and therefore, we have two cases: $(1)\nu_1 = 3$ and $(2) \nu_1 = 4$.

• If $\nu_1=3$, then from $\eta=-4, \eta=2(\nu_1-2)(4\nu_1-2\nu_1B-f)$, it follows that 3B+f=8 and so $g_0=35$. By genus formula

$$t_2 + t_3 = 11 - g$$
, $t_2 + 3t_3 = 35 - g$.

Hence, $2t_3 = 24$, $t_3 = 12$, $t_2 < 0$; a contradiction.

• If $\nu_1 = 4$, then by the same argument as before, $\zeta_4 = 0$, $t_3 = 0$, (2 - B)4 - f = -1 and $g_0 = 56$. By genus formula

$$t_2 + t_4 = 11 - g$$
, $t_2 + 6t_4 = 56 - g$.

Hence, $5t_4 = 45$; $t_4 = 9$. And hence $t_2 = 2 - g$ and the type is $[8*9; 4^9, 2^{\varepsilon}], g = 2 - \varepsilon$ or its associates, where $D^2 = 4g - 8$.

12.2 case $D^2 = 4g - 9$

Suppose that $D^2 = 4g - 9$. Then l = 9 and r = 12 - g. Therefore,

$$0 \le \zeta_{\nu_1} = \eta - \nu_1 + 5 \le -\nu_1 + 5.$$

• case $\nu_1 = 5$ Then $\zeta_{\nu_1} = 0, \sigma = 10$ and $\eta = 0$. Hence, $t_3 = t_4 = 0$ and $g_0 = 81$. By genus formula

$$t_2 + t_5 = 12 - g$$
, $t_2 + 10t_5 = 81 - g$.

Hence, $9t_5 = 81 - 12 = 69$; a contradiction.

• case $\nu_1 = 4$ Then $\sigma = 8, 0 \le \zeta_{\nu_1} = \eta + 1; -1 \le \eta$. Moreover,

$$\eta = (\sigma - 4)(\sigma - f - B\sigma/2) = 4(8 - f - 4B) = -4, 0.$$

Hence, $\eta = 0$ and thus $\zeta_{\nu_1} = t_3 = 1, g_0 = 49$. By genus formula,

$$t_2 + t_3 + t_4 = 12 - g$$
, $t_2 + 3t_3 + 6t_4 = 49 - g$.

Hence, $5t_4 = 35$, $t_4 = 7$ and $t_2 = 4 - g$. The type is $[8 * 8; 4^7, 3, 2^{4-g}]$ or its associates, where g = 1, 2, 3, 4.

• case $\nu_1 = 3$. Then $\zeta_{\nu_1} = 0$ and $\sigma = 6, \zeta_{\nu_1} = \eta + 2$; thus $\eta = -2$. Hence, f + 3B = 7 and $g_0 = 30$. By genus formula,

$$t_2 + t_3 = 12 - g$$
, $t_2 + 3t_3 = 30 - g$.

Hence, $t_3 = 9, t_2 = 3 - g$. The type is $[6 * 7; 3^9, 2^{3-g}]$ or its associates where g = 1, 2, 3.

12.3 case $D^2 = 4q - 10$

Suppose that $D^2 = 4q - 10$. Then l = 10, r = 13 - q,

$$0 < \zeta_{\nu_1} = \eta - 2\nu_1 + 6 < -2(\nu_1 - 3).$$

Hence, $\nu_1 = 3$, $\sigma = 6$ and $\eta = 0$, 3B + f = 6. Clearly, $g_0 = 25$. By genus formula,

$$t_2 + t_3 = 13 - q$$
, $t_2 + 3t_3 = 25 - q$.

Hence, $t_3 = 6$ and $t_2 = 7 - g$. The type is $[6 * 6; 3^6, 2^{7-g}]$ or its associates, where $g = 1, 2, \dots, 7$.

12.3.1 B) case $\nu_1 \leq 2$

Since $\nu_1 \leq 2$, it follows that

$$4 = 2(g+1) - 2\overline{g} = 2Z^2 - D \cdot Z = (2Z - D) \cdot Z = \tau_3 - 2.$$

Hence, $\tau_3 = 6$. From

$$(\sigma - 3)(2f + B\sigma - 6) = 6,$$

we obtain either (1) $\sigma - 3 = 1, 2f + B\sigma - 6 = 6$ or (2) $\sigma - 3 = 2, 2f + B\sigma - 6 = 3$. case (1) $\sigma = 4, 2f + B\sigma = 12, g_0 = 15$. The type is $[4 * 6; 2^r]$ and its associates, where $g = 15 - r = 1, 2, \dots, 14$ and $D^2 = 4g - 12$.

case (2) $\sigma=5, 2f+B\sigma=9, g_0=14$ and the type is $[5*7,1;2^r]$, where g=14-r and $D^2=4g-11$.

Accordingly, we establish the following result:

Theorem 9 Suppose that $P_2[D] = 3g > 1$. Then $Z^2 = g + 1$ and

- case $S = \mathbf{P}^2$. Then the type is [7,1] and $g = 15, D^2 = 49$.
- case $\nu_1 \leq 2$. Then the type is (1) $[4*6;2^r]$ or its associates, where g = 15 r and $D^2 = 4g 12$, or (2) $[5*7,1;2^r]$, where g = 14 r and $D^2 = 4g 11$.
- case $\nu_1 \geq 3$. Then
 - 1. if $5 \ge g \ge 7$ then the type is $[6*6;3^6,2^{7-g}]$ or its associates , where $D^2=4g-10$.
 - 2. If g = 4 then
 - (a) if $D^2 = 7$ then the type is $[8 * 8; 4^7, 3]$ or its associates.
 - (b) If $D^2 = 6$ then the type is $[6*6; 3^6, 2^3]$ or its associates.
 - 3. If g = 3 then
 - (a) if $D^2 = 2$ then the type is $[6*6; 3^6, 2^4]$ or its associates.
 - (b) If $D^2 = 3$ then the type is $[8 * 8; 4^7, 3, 2]$ or $[6 * 7; 3^9]$ or their associates.
 - 4. If q=2 then
 - (a) if $D^2 = 0$ then the type is either $[10 * 10; 5^7, 4, 3]$ or $[8 * 9; 4^9]$ or their associates.

- (b) If $D^2 = -1$ then the type is either $[6*7;3^9,2]$ or $[8*8;4^7,3,2^2]$ or their associates.
- (c) If $D^2 = -2$ then the type is $[6*6; 3^6, 2^5]$ or its associates.
- 5. If g = 1 then
 - (a) if $D^2 = -4$ then the type is $[8*8;4^6,3^4]$ or $[8*9;4^9,2]$ or $[10*10;5^7,4,3,2]$ or their associates.
 - (b) If $D^2 = -5$ then the type is $[6*7; 3^9, 2^2]$ or $[8*8; 4^7, 3, 2^3]$ or their associates.
 - (c) If $D^2 = -6$ then the type is $[6*6; 3^6, 2^6]$ or its associates.

When $\sigma = 3$, the invariants are easily computed:

$$A = Z^2 - \overline{g} = -1, \alpha = \overline{g} - 9, \omega = -9, \Omega = -3 - \overline{g}.$$

Moreover if the type is $[d;1], d \geq 4$, then

$$A = \frac{(d-3)(d-6)}{2}, \alpha = d(d-6), \omega = \frac{d(d-9)}{2}, \Omega = (d-3)(d-9).$$

13 curves with Q = 1, 2

Here, Q denotes $(2Z - D)^2$.

Proposition 10 Assume that Q = 1. Then

- 1. (S,D) is obtained from a plane curve of degree 7 with at most double points and $g = 15 r \le 15$ or
- 2. the type is $[6*6;3^7,2^{\varepsilon}]$ or its associates, where $g=4-\varepsilon$ or
- 3. the type is [5; 1] or
- 4. the type is [3*5,1;1].

Assume that Q = 2. Then

- 1. the type is $[8*8;4^7,3^2]$ or its associates or
- 2. the type is $[6*6;3^6,2^\varepsilon]$ or its associates , where $g=7-\varepsilon$ and $D^2=4g-10$ or

- 3. the type is $[5*5;2^r]$ or $[5*10,2;2^r]$ or their associates, where g=16-rand $D^2 = 50 - 4r = 4a - 14$ or
- 4. the type is [3*3;1].

Proof: First suppose that $\nu_1 \geq 3$. By $Q = (2Z - D)^2$, we get

$$0 \le (3Z - 2D) \cdot (2Z - D)$$

= $(4Z - 2D) \cdot (2Z - D) - Z \cdot (2Z - D)$
= $2w - Z \cdot (2Z - D)$.

Since $1 < Z \cdot (2Z - D)$, it follows that

$$0 \le (3Z - 2D) \cdot (2Z - D) = 2w - Z \cdot (2Z - D) < 2w.$$

Suppose that Q=1. Then $Z \cdot (2Z-D)=2$; hence, $Z^2=q$, $D^2=4q-7$. By Theorem 8, the type is $[6*6; 3^7, 2^{\varepsilon}]$ and $g = 4 - \varepsilon$.

Suppose that Q=2. Then we have two cases (1) $Z \cdot (2Z-D)=2$ and $(2) Z \cdot (2Z - D) = 4.$

case (1) $Z \cdot (2Z - D) = 2$. Then, $Z^2 = q$ and $D^2 = 4q - 6$. By Theorem 8 the type is $[8*8;4^7,3^2]$ or its associates, where g=1.

case (2) $Z \cdot (2Z - D) = 4$. Then, $Z^2 = g + 1$, $D^2 = 4g - 10$. By Theorem 9, the type is $[6*6;3^6,2^{\varepsilon}]$ or its associates, where $g=7-\varepsilon>0$.

Second, suppose that $\nu_1 \leq 2$ and (S, D) is obtained from (Σ_B, C) which is # minimal. Then $Q = (2Z - D)^2 = \tau_4$. Note that

$$\tau_4 = (\sigma - 4)(B\sigma + 2f - 8).$$

If Q = 1, then either 1) $\sigma - 4 = 1, B = 1, f = 2$ and the type is $[5 * 7, 1; 2^r]$ where $g_0 = 24 - 10 = 14, g = 14 - r$ or 2) $\sigma - 4 = -1, B = 1, f = 2$ and the type is [3*5,1;1] where $g_0 = g = 9$.

If
$$Q = 2$$
, then $\sigma - 4 = i$ and $B(i + 4) + 2f - 8 = \frac{2}{i}$.

When B=0, we obtain either 1) $i=1, \sigma=f=5$ and the type is $[5*5;2^r]$ and $g_0 = 16$, or 2) $i = -1, \sigma = f = 3$ and the type is [3*3;1] and $g_0 = g = 4,$

When B=1, we obtain $i+2f=\frac{2}{i}$. This case cannot occur. When $B\geq 2$, we obtain $i=1, f=0, B=2, \sigma=f=5$. Thus the type

is $[5*10,2;2^r]$ and g=16-r.

Finally, suppose that the type of (S, D) is [d; 1]. From 2Z - D = (d-6)H, it follows that $(d-6)^2H^2=Q=1,2$. Then Q=1 and d=5 or d=7.

13.1 Formula II'

Since

$$D + \nu_1 K_S \sim C + \nu_1 K_0 + \sum_{j=1}^r (\nu_1 - \nu_j) E_j,$$

it follows that

$$(D+\nu_1K_S)\cdot(D+2K_S)=(\nu_1Z_0-(\nu_1-1)C)\cdot(2Z_0-C)+\sum_{j=1}^r(\nu_1-\nu_j)(\nu_j-2).$$

Put

$$\rho_{\nu_1} = (D + \nu_1 K_S) \cdot (D + 2K_S), \quad \theta_{\nu_1} = (\nu_1 Z_0 - (\nu_1 - 1)C) \cdot (2Z_0 - C),$$

$$\zeta_{\nu_1} = \sum_{j=1}^r (\nu_1 - \nu_j)(\nu_j - 2).$$

Making use of the symbol t_j which denotes the number of j- ple singular points of the curve C, ζ_{ν_1} can be rewritten as follows:

$$\zeta_{\nu_1} = \sum_{j=3}^{\nu_1-1} (\nu_1 - j)(j-2)t_j.$$

By Lemma 3, we obtain the next result:

Lemma 11 (Formula II') Let $\rho_{\nu_1} = (D + \nu_1 K_S) \cdot (D + 2K_S)$. Then

$$\rho_{\nu_1} = 2\nu_1 K_S^2 - (\nu_1 + 1)D^2 + 2(2 + \nu_1)\overline{g},$$

and

$$\rho_{\nu_1} = \zeta_{\nu_1} + \theta_{\nu_1}, \quad \theta_{\nu_1} = \tilde{A}(\sigma - 2\nu_1) + \gamma$$

where
$$\tilde{A} = (\sigma + \nu_1 - 2)B + 2f - 2\nu_1 - 4$$
 and $\gamma = 2(\nu_1 - 2)(f + \nu_1 B - 2\nu_1)$.

Corollary 5 If $p = \sigma - 2\nu_1 > 0$, then $\tilde{A} + \gamma \geq 3\nu_1 - 5$. Moreover, if $\tilde{A} + \gamma = 3\nu_1 - 5$, then B = 1 and $\sigma - 2\nu_1 = 1$.

Proof: If
$$B = 0$$
 then $\tilde{A} = 2f - 2\nu_1 - 4 \ge 2(p + 2\nu_1) - 2\nu_1 - 4 \ge 2\nu_1 - 2$ and $\frac{\gamma}{2\nu_1 - 4} = f - 2\nu_1 \ge p \ge 1$. Hence, $\tilde{A} + \gamma \ge 2\nu_1 - 2 + 2\nu_1 - 4 = 4\nu_1 - 6$. If $B = 1$ then

$$\tilde{A} = \sigma + \nu_1 - 2 + 2f - 2\nu_1 - 4 = p + 2\nu_1 + \nu_1 - 2 + 2f - 2\nu_1 - 4 \ge 3\nu_1 - 5$$

and
$$\frac{\gamma}{2\nu_1-4}=f+\nu_1-2\nu_1\geq 0$$
. Hence, in particular, $\tilde{A}+\gamma\geq 3\nu_1-5$. If $B\geq 2$ then

$$\tilde{A} \ge 2(\sigma + \nu_1 - 2) + 2f - 2\nu_1 - 4 \ge 4\nu_1 - 6$$
 and $\frac{\gamma}{2\nu_1 - 4} = f + (B - 2)\nu_1 \ge 0$.

Lemma 12

$$(\nu_1 Z - (\nu_1 - 1)D) \cdot (2Z - D) = \tau_{\nu_1 + 2} - 2(\nu_1 - 2)^2 + \zeta_{\nu_1}.$$

Proof: From

$$(\nu_1 Z - (\nu_1 - 1)D) \cdot Z = \tau_{\nu_1 + 1} - 2(\nu_1 - 1)^2 + \widetilde{\delta}(\nu_1),$$

$$(\nu_1 Z - (\nu_1 - 1)D) \cdot D = \tau_{\nu_1} - 2\nu_1^2 + \widetilde{\delta}_0(\nu_1),$$

and

$$\zeta_{\nu_1} = 2\widetilde{\delta}(\nu_1) - \widetilde{\delta}_0(\nu_1),$$

it follows that

$$\rho_{\nu_1} = (\nu_1 Z - (\nu_1 - 1)D) \cdot (2Z - D)$$

$$= 2\tau_{\nu_1 + 1} - 4(\nu_1 - 1)^2 + 2\widetilde{\delta}(\nu_1) - (\tau_{\nu_1} - 2\nu_1^2 + \widetilde{\delta}_0(\nu_1))$$

$$= 2\tau_{\nu_1 + 1} - \tau_{\nu_1} - 2(\nu_1 - 2)^2 + 4 + \zeta_{\nu_1}$$

$$= \tau_{\nu_1 + 2} - 2(\nu_1 - 2)^2 + \zeta_{\nu_1}.$$

In particular, $\theta_{\nu_1} = \tau_{\nu_1+2} - 2(\nu_1 - 2)^2$.

14 rational curves

In what follows, we shall study minimal pairs (S,D) with $\kappa[D]=2$ and g(D)=0. In this case, $\sigma\geq 4, \beta=-D^2\geq 5$ and $K_{\beta}=K_S+(1-\frac{2}{\beta})D$ is nef and big. Moreover, $P_2[D]\geq 2$ and $K_{\beta}^2=K_S^2-\beta+4-\frac{4}{\beta}>0$.

Since $\sigma \geq 4$, the next result has been proved in Proposition 3 for non-rational curves.

Lemma 13 If g(D) = 0 then $2Z - D = D + 2K_S$ is neg.

Proof: First note that $(D + 2K_S) \cdot D = -\beta + 2(\beta - 2) = \beta - 4 \ge 1$. If there exists an irreducible curve $A \ne D$ such that $(D + 2K_S) \cdot A < 0$, then $A^2 < 0$, $A \cdot K_S < -A \cdot D/2 \le 0$. Hence, A turns out to be an exceptional curve and $A \cdot D < -2A \cdot K_S = 2$; thus $A \cdot D < 2$. This contradicts the minimality of (S, D).

Lemma 14 $K_S^2 \le -1$ and $Z^2 \le \beta - 5$.

Proof: Suppose that $8-r=K_S^2\geq 0$. Then by Riemann-Roch, $|-K_S|\neq \emptyset$. Since $D+2K_S$ is nef, it follows that $(D+2K_S)\cdot K_S\leq 0$ and so

$$(D+2K_S) \cdot K_S = \beta - 2 + 2(8-r) \le 0.$$

Hence,

$$\beta - 2 + 2(8 - r) = 14 - 2r + \beta \le 0,$$

thus $7 + \frac{5}{2} \le 7 + \frac{\beta}{2} \le r$. Hence, $10 \le r$. This contradicts the inequality $8 - r = K_S^2 \ge 0$.

Moreover, from $(Z - D)^2 = K_S^2 \le -1$, the result follows immediately.

Proposition 11 If g(D) = 0 then $Q = 4Z^2 - 8 - \beta = 4K_S^2 + 3\beta - 8 \ge 0$. Moreover, $4Z^2 - 8 - \beta = 0$ if and only if $\sigma = 4$.

Proof: Since 2Z-D is nef and $|2Z-D| \neq \emptyset$, it follows that $Q = (2Z-D)^2 \geq 0$ and $Q = 4Z^2 - 8 - \beta \geq 0$.

Suppose that $\sigma = 4$. Then $\nu_1 \leq 2$ and $2Z - D = D + 2K_S = C + 2K_0 \sim (f - 4 + 2B)F_c$ and hence, Q = 0.

Next, under the hypothesis $Q = (2Z - D)^2 = 4K_S^2 + 3\beta - 8 = 0$, we shall derive $\sigma = 4$, examining the following cases, separately.

• case $\nu_1 \geq 3$. Then

$$(3Z - 2D) \cdot (2Z - D) = (D + 3K_S) \cdot (D + 2K_S) > 0.$$

On the other hand, 2(2Z - D) = Z + (3Z - 2D) and so

$$0 = 2Q = 2(2Z - D)^2 = 2(2Z - D) \cdot (2Z - D) = Z \cdot (2Z - D) + (3Z - 2D) \cdot (2Z - D) \ge 0.$$

Hence, $Z \cdot (2Z - D) = (3Z - 2D) \cdot (2Z - D) = 0$. Thus $D \cdot (2Z - D) = 0$, which implies that $\beta = -D^2 = -2D \cdot Z = 4$; a contradiction.

• case $\nu_1 \leq 2$. Then

$$0 = Q = \tau_4$$
, $\tau_4 = (\sigma - 4)(\sigma B + 2f - 8)$,

$$0 = (\sigma - 4)(\sigma B + 2f - 8).$$

This implies that $\sigma - 4 = 0$.

Later, pairs (S, D) with Q = 1, 2 will be enumerated.

Proposition 12 If D is a rational curve with $\kappa[D] = 2$, then $P_2[D] = Z^2 + 2$.

Proof: Since K_{β} is nef and big and $\lceil K_{\beta} \rceil = D + K_S$, it follows that $H^1(S, \mathcal{O}_S(D + 2K_S)) = 0$ by a theorem of Kawamata. Hence, by Riemann-Roch,

$$\dim H^{0}(S, \mathcal{O}_{S}(D+2K_{S})) = \frac{(D+K_{S}) \cdot (D+2K_{S})}{2} + 1$$
$$= \frac{Z \cdot (2Z-D)}{2} + 1 = Z^{2} + 2.$$

By $2(D + K_S) \cdot D < 0$, we get |2Z| = |2Z - D| + D; hence,

$$P_2[D] = \dim H^0(S, \mathcal{O}_S(D + 2K_S)) = Z^2 + 2.$$

This implies that $Z^2 \geq 0$, for $P_2[D] \geq 2$.

In later sections, pairs with $P_2[D] = 2,3$ will be enumerated.

15 logarithmic plurigenera

However, logarithmic m genera are a little hard to compute.

Lemma 15 If F is an effective divisor such that $F \cdot D < 0$ where D is an irreducible curve with $\beta = -D^2 > 0$, then letting $a_1 = \lceil \frac{F \cdot D}{\beta} \rceil$, $a_1 D$ becomes a fixed component of |F|.

Further, $\dim |F| = \dim |F - a_1 D|$.

Proof: There exist an effective divisor F_1 which does not contain D and a positive integer a such that $F = F_1 + aD$. Since $F_1 \cdot D \geq 0$, $F \cdot D = F_1 \cdot D + aD^2 = F_1 \cdot D - a\beta \geq -a\beta$. Hence, $a \geq \frac{-F \cdot D}{\beta}$. Therefore, we obtain $a \geq a_1 = \lceil \frac{-F \cdot D}{\beta} \rceil$.

For $m \geq 2$, let $Y = (m-1)K_{\beta} = (m-1)K_S + (m-1)(1-\frac{2}{\beta})D$, which is nef and big. Then $\lceil Y \rceil = (m-1)K_S + \lceil (m-1)(1-\frac{2}{\beta}) \rceil D$ and by a theorem of Kawamata, $H^1(S, \mathcal{O}_S(K_S + \lceil Y \rceil)) = 0$.

Applying Lemma 15 to F = mZ, we obtain $F \cdot D = -2m$, $a_1 = \lceil \frac{2m}{\beta} \rceil$ and $K_S + \lceil Y \rceil = mK_S + \lceil (m-1)(1-\frac{2}{\beta}) \rceil D$.

Claim 5

$$mZ - \lceil \frac{2m}{\beta} \rceil D \le mK_S + \lceil (m-1)(1-\frac{2}{\beta}) \rceil D \le mZ.$$

Proof: It suffices to verify the inequalities:

$$m - \lceil \frac{2m}{\beta} \rceil \le \lceil (m-1)(1 - \frac{2}{\beta}) \rceil \le m.$$

Let
$$q = \lceil \frac{2m-2}{\beta} \rceil$$
 and $2m-2 = q\beta + r_0$. Then $\lceil (m-1)(1-\frac{2}{\beta}) \rceil = m-q-1$ and $\lceil \frac{2m}{\beta} \rceil = \lceil \frac{2+q\beta+r_0}{\beta} \rceil = q+1$ or $q+2$. Hence, $m-\lceil \frac{2m}{\beta} \rceil = m-q-2$ or $m-q-1$.

Therefore,

$$\dim |mZ| = \dim |mZ - aD| = \dim |K_S + \lceil Y \rceil|.$$

Letting $V = \lceil Y \rceil$, we get V = (m-1)Z - qD and $K_S + V = mZ - (q+1)D$. By a vanishing theorem of Kawamata, $H^1(S, \mathcal{O}_S(K_S + V)) = 0$ and so by Riemann-Roch,

$$\dim |mZ| = \dim |K_S + V| = \frac{V \cdot (K_S + V)}{2}$$

$$= \frac{((m-1)Z - qD) \cdot (mZ - (q+1)D)}{2}$$

$$= \frac{m(m-1)Z^2 + q(q+1)D^2 - (qm + (m-1)(q+1))Z \cdot D}{2}$$

$$= \frac{m(m-1)Z^2 + (q+1)(-q\beta) + 2(qm + (m-1)(q+1))}{2}$$

$$= \frac{m(m-1)Z^2}{2} + mq + \frac{r_0(q+1)}{2}.$$

Thus we establish the following result.

Proposition 13 If D is a rational curve with $\beta = -D^2$ and $\kappa[D] = 2$ then, letting $q = \left[\frac{2m-2}{\beta}\right]$ and $2m-2 = q\beta + r_0$, we obtain

$$P_m[D] = \frac{m(m-1)Z^2}{2} + mq + \frac{r_0(q+1)}{2} + 1.$$

In particular,

$$P_3[D] = 3Z^2 + 3.$$

When m = 4, we get $2m - 2 = 6 = q\beta + r_0$. If $\beta > 6$ then $q = 0, r_0 = 6$. Hence,

$$P_4[D] = 6Z^2 + 4.$$

If $\beta = 6$ then $q = 1, r_0 = 0$. Hence,

$$P_4[D] = 6Z^2 + 5.$$

If $\beta = 5$ then $q = 1, r_0 = 1$ and in this case $Z^2 = 0$. Hence,

$$P_4[D] = 6Z^2 + 6 = 6.$$

15.1 invariant $P_{3,1}[D]$

By Lemma 13, if $\sigma > 4$ then 2Z - D is nef and big. Hence, $H^1(S, \mathcal{O}_S(K_S + 2Z - D)) = 0$. Noting that $K_S + 2Z - D = 3Z - 2D \sim D + 3K_S$, by Riemann-Roch, we get

$$\dim H^0(S, \mathcal{O}_S(3K_S+D)) = \frac{(3Z-2D)\cdot (2Z-D)}{2} + 1 = 3Z^2 + 8 + D^2.$$

If $\sigma < 6$ then $(3Z - 2D) \cdot F_c = (\sigma - 6)\Delta_0 \cdot F_c = (\sigma - 6) < 0$. Hence, $|3Z - 2D| = \emptyset$, i.e, $P_{3,1}[D] = 0$. Thus, we obtain the next result.

Proposition 14 If D is rational, $\kappa[D] = 2$ and $\sigma > 4$, then

$$P_{3,1}[D] = 3Z^2 + 8 + D^2$$
.

Moreover, if $\sigma = 5$ then $P_{3,1}[D] = 0$.

Note that $P_{3,2}[D] = P_3[D] = 3Z^2 + 3$ and that if $\sigma \ge 6$ then $3Z^2 + 8 \ge \beta$. Next, let Y be $\frac{3}{2}(2Z - D)$, that is nef and big. Hence, $H^1(S, \mathcal{O}_S(K_S + \lceil Y \rceil)) = 0$. However, $\lceil Y \rceil = 3Z - D$ and $K_S + \lceil Y \rceil = 4Z - 2D$. Hence,

$$\dim H^0(S, \mathcal{O}_S(4Z - 2D)) = \frac{(4Z - 2D) \cdot (3Z - D)}{2} + 1 = 6Z^2 + 11 + D^2.$$

Thus, we obtain the next result.

Proposition 15 If D is rational, $\kappa[D] = 2$ and $\sigma > 4$, then

$$P_{4,2}[D] = 6Z^2 + 11 + D^2$$
.

16 curves with $P_2[D] = 2$

We shall give a complete list of types of pairs (S,D) such that $P_2[D] = 2$, $\kappa[D] = 2$, g(D) = 0. Hence, suppose that $\kappa[D] = 2$, g(D) = 0, $P_2[D] = 2$. Then by Lemma 12, $Z^2 = 0$; i.e. $K_S^2 - D^2 = 4$ and so $\beta = r - 4 \ge 5$. Note that

$$\rho_{\nu_1} = (\nu_1 Z - (\nu_1 - 1)D) \cdot (2Z - D) = (6 - \beta)\nu_1 + \beta - 4.$$

Moreover, from $Q \geq 0$, it follows that

$$Q = 4Z^2 - 4Z \cdot D + D^2 = 8 - \beta.$$

Hence, we have four cases according to the value of β , i.e. $\beta = 5, 6, 7, 8$. However, first we shall consider the case when $\nu_1 = 2$.

Proposition 16 If $Z^2 = 0$ and $\nu_1 = 2$, then $\beta = 12$.

Proof: From $2Z^2-2(g-1)=2Z^2-Z\cdot D=2Z_0{}^2-Z_0\cdot C=\tau_3-2$, it follows that

$$(\sigma - 3)(\sigma B + 2f - 6) = \tau_3 = 2 + 2Z^2 - 2(g - 1) = 4.$$

Hence, $\sigma - 3 = 1, 2$.

If $\sigma = 4$, then $\sigma B + 2f - 4 = 2 + 4 = 6$, thus (B, f) = (0, 5), (1, 3), (2, 1). In each case, $g_0 = 12, r = 12, K_S^2 = -4, \beta = 12$. The type is $[4 * 5; 2^{12}]$ or its associates.

If $\sigma = 5$, then 5B + 2f - 4 = 2 + 2 = 4, thus (B, f) = (0, 4). But this is impossible, for $\sigma \le f$.

Second, under the hypothesis $\nu_1 \geq 3$ we shall examine the following four cases, $\beta = 5, 6, 7, 8$, separately.

16.1 case $\beta = 5$

Then r=9 and $K_S^2=-1$ and moreover $\rho_{\nu_1}=\nu_1+1$; hence, by Formula II' (Lemma 11), $\nu_1+1=\zeta_{\nu_1}+\theta_{\nu_1}$.

Claim 6 $p = \sigma - 2\nu_1 = 0$.

Proof: Otherwise, from $\theta_{\nu_1} \geq \tilde{A} + \gamma \geq 3\nu_1 - 5$, it follows that $\nu_1 + 1 \geq 3\nu_1 - 5$. Hence, $\nu_1 \leq 3$; i.e. $\nu_1 = 3$. Thus $B = 1, \sigma = 2\nu_1 + 1 = 7, f = \nu_1 = 3$; hence, $g_0 = 6 \cdot 9 - 21 = 33$. Therefore, by genus formula,

$$t_2 + t_3 = 9$$
, $t_2 + 3t_3 = 33$.

Thus $2t_3 = 33 - 9 = 24 > 18$; a contradiction. Therefore p = 0 has been established and

$$\nu_1 + 1 = \zeta_{\nu_1} + 2(\nu_1 - 2)(f + \nu_1 B - 2\nu_1).$$

Letting $q = f + \nu_1 B - 2\nu_1$, we get $\nu_1 + 1 \ge 2q(\nu_1 - 2)$ and thus

$$3 \le \nu_1 \le \frac{4q+1}{2q-1} = 2 + \frac{3}{2q-1}.$$

Hence, if q > 0 then q = 1, 2. Note that $\gamma = 2q(\nu_1 - 2)$

16.1.1 case $\gamma > 0$

If q = 1, then $\nu_1 \leq 5$. If q = 2, then $\nu_1 \leq 3$.

• $\nu_1 = 5$. Then $\sigma = 10, q = 1$.

From $1 = f + \nu_1 B - 2\nu_1$, it follows that $g_0 = 90$ and $\zeta_{\nu_1} = \zeta_5 = 0$. Hence, $t_3 = t_4 = 0$. From $t_2 + t_5 = r = 9$ and $t_2 + 10t_5 = g_0 = 90$, it follows that $t_2 = 0, t_5 = 9$. The type is $[10 * 11; 5^9]$ or its associates.

• case $\nu_1 = 4$. Then $\sigma = 8$ and q = 1.

From $1 = f + \nu_1 B - 2\nu_1$, it follows that $g_0 = 56$ and $\zeta_{\nu_1} = \zeta_4 = 1$. Thus $t_3 = 1$. From $t_2 + t_3 + t_4 = r = 9$, $t_2 + 3t_3 + 6t_4 = g_0 = 56$, it follows that $t_4 = 9$ and $t_2 = -1$; a contradiction.

• case $\nu_1 = 3$. Then $\sigma = 6$, $\zeta_{\nu_1} = \zeta_3 = 0$, $4 = \zeta_{\nu_1} + 2q$. Hence, q = 2. From $2 = f + \nu_1 B - 2\nu_1$, it follows that $\sigma = 6$ and $g_0 = 35$. From $t_2 + t_3 = r = 9$, $t_2 + 3t_3 = g_0 = 35$, it follows that $2t_3 = 26$, $t_2 < 0$; a contradiction.

16.1.2 case $\gamma = 0$

Finally, we consider the case in which q=0, i.e. $\gamma=0$. Then $\theta_{\nu_1}=0$ and from $\theta_{\nu_1}=(\nu_1-2)(\tilde{B}-2\sigma)$ it follows that $\tilde{B}-2\sigma=0$; hence, $2g_0=\tau_1=(\sigma-1)(\tilde{B}-2)=2(\sigma-1)^2$.

Moreover, $\nu_1 + 1 = \zeta_{\nu_1}$; hence,

$$\nu_1 + 1 = F(\nu_1) = (\nu_1 - 3)x_1 + 2(\nu_1 - 4)x_2 + 3(\nu_1 - 5)x_3 + \cdots$$

Since $\nu_1 + 1 = F(\nu_1) \ge 2(\nu_1 - 4)$ it follows that $\nu_1 \le 9$.

• case $\nu_1 = 9$ In this case, $\sigma = 18, g_0 = 17^2 = 289$ and

$$\nu_1 + 1 = 10 = F(9) = 6x_1 + 10x_2 + \cdots$$

Then $x_2 = 1, x_1 = x_3 = \cdots = 0$ and since $t_4 + t_7 = x_2 = 1$, it follows that

$$t_2 + t_4 + t_7 + t_9 = 9$$
, $t_2 + 6t_4 + 21t_7 + 36t_9 = 289$.

Therefore,

$$5t_4 + 20t_7 + 35t_9 = 280$$
, $t_4 + 4t_7 + 7t_9 = 56$, $7t_9 = 55 - 3t_7 = 55$ or 52.

This is a contradiction.

• case $\nu_1 = 8$

In this case $\sigma = 16, g_0 = 15^2 = 225$ and

$$\nu_1 + 1 = 9 = F(8) = 5x_1 + 8x_2 + 9x_3$$
.

Hence, $t_5 = x_3 = 1$, $t_3 = t_4 = t_7 = t_6 = 0$. By genus formula

$$t_2 + t_5 + t_8 = 9, t_2 + 10t_5 + 28t_8 = 225.$$

From these, we get $t_5 + 3t_8 = 23$; a contradiction.

• case $\nu_1 = 7$

In this case, $\sigma = 14, g_0 = 13^2 = 169$ and

$$\nu_1 + 1 = 8 = F(7) = 4x_1 + 6x_2$$
.

Hence, $t_3 + t_6 = x_1 = 2, t_4 = t_5 = 0$ and so

$$t_2 + t_3 + t_6 + t_7 = 9$$
, $t_2 + 3t_3 + 15t_6 + 21t_7 = 169$.

From these, it follows that $2t_3 + 14t_6 + 20t_7 = 160$; $t_3 + 7t_6 + 10t_7 = 80$. Thus $6t_6 + 10t_7 = 80 - 2 = 78$; $3t_6 + 5t_7 = 39$, a contradiction.

• case $\nu_1 = 6$

In this case $\sigma = 12, q_0 = 11^2 = 121$ and

$$\nu_1 + 1 = 7 = F(6) = 3x_1 + 4x_2.$$

Hence, $t_3 + t_5 = x_1 = 1, t_4 = x_2 = 1$ and

$$t_2 + t_3 + t_4 + t_5 + t_6 = 9$$
, $t_2 + t_6 = 7$, $t_2 + 3t_3 + 6t_4 + 10t_5 + 15t_6 = 121$.

From these, it follows that

$$7+3+6+7t_5+14t_6=121$$
, $7t_5+14t_6=121-16=105$, $t_5+2t_6=15$.

Hence, $t_2 = t_3 = 0, t_4 = t_5 = 1, t_6 = 7$. Thus the type is $[12 * 12; 6^7, 5, 4]$ or its associates.

• case $\nu_1 = 5$

In this case $\sigma = 10, g_0 = 9^2 = 81$ and

$$\nu_1 + 1 = 6 = F(5) = 2x_1$$
.

Hence, $t_3 + t_4 = x_1 = 3$. Thus

$$t_3 + t_4 + t_2 + t_5 = 9,3t_3 + 6t_4 + t_2 + 10t_5 = 81,$$

$$9 + 3t_4 + 6 + 9t_5 = 81, 3t_4 + 9t_5 = 81 - 15 = 66, t_4 + 3t_5 = 22.$$

Since $t_4 \leq 3$ and $t_5 \leq 6$, it follows that $t_4 + 3t_5 \leq 21$; a contradiction.

• case $\nu_1 = 4$

In this case $\sigma = 8$, $g_0 = 7^2 = 49$ and

$$\nu_1 + 1 = 5 = F(4) = x_1$$
.

Hence, $t_3 = x_1 = 5$, $t_2 + t_4 = 4$. Thus

 $3t_3+6t_4+t_2=49, 15+4+5t_4=49; 5t_4=30, t_4=6>4;$ a contradiction.

• case $\nu_1 = 3$

In this case $\sigma = 6$, $g_0 = 5^2 = 25$ and $t_2 + t_3 = 9$, $t_2 + 3t_3 = 25$, $2t_3 = 16$. Thus

$$t_2 = 1, \quad t_3 = 8.$$

Then $D^2 = 72 - 4 - 8 \cdot 9 = -4$, a contradiction.

16.2 case $\beta = 6$

Then $r = 10, K_S^2 = -2$ and so $\rho_{\nu_1} = 6\nu_1 - 4 - 6(\nu_1 - 1) = 2$. By Lemma 11

$$2 = \zeta_{\nu_1} + \theta_{\nu_1}$$
.

By $\nu_1 \geq 3$, we get $3\nu_1 - 5 \geq 4$. Hence, if p > 0 then by Corollary, $2 = \rho_{\nu_1} \geq \tilde{A} + \gamma \geq 3\nu_1 - 5 \geq 4$, contradiction. Therefore, if $\theta_{\nu_1} > 0$, then $\sigma = 2\nu_1$ and $2 = \theta_{\nu_1} = \gamma = 2(\nu_1 - 2)(f + \nu_1 B - 2\nu_1)$. Hence, $\nu_1 = 3$ and $f + \nu_1 B - 2\nu_1 = 1$. Thus B = 0, f = 7, $\sigma = 6$, $g_0 = 30$. From

$$t_2 + t_3 = 10, t_2 + 3t_3 = 30,$$

it follows that $t_2 = 0, t_3 = 10$. The type is $[6*7;3^{10}]$ or its associates. If $\theta_{\nu_1} = 0$, then $\sigma = 2\nu_1$ and $f + \nu_1 B - 2\nu_1 = 0$. Hence, $2 = \zeta_{\nu_1}$.

$$\zeta_{\nu_1} = 2 = F(\nu_1) = (\nu_1 - 3)x_1 + 2(\nu_1 - 4)x_2 + \cdots$$

Then from $2 = F(\nu_1) \ge \nu_1 - 3$, it follows that $\nu_1 \le 5$.

• case $\nu_1 = 5, x_1 = 1$. Then $\sigma = f = 10, g_0 = 81, t_3 + t_4 = x_1 = 1$ and so

$$t_2 + t_5 + t_3 + t_4 = 10$$
, $t_2 + 10t_5 + 3t_3 + 6t_4 = 81$.

Hence,

$$9 + 9t_5 + 3 + 3t_4 = 81, 9t_5 + 3t_4 = 81 - 12 = 69, 3t_5 + t_4 = 23.$$

Since $t_4 = 0, 1$, there exist no solutions.

• case $\nu_1 = 4, x_1 = 2$. Then $\sigma = 8, t_3 = 2$. Hence, $g_0 = 49$. By genus formula,

$$t_2 + t_3 + t_4 = 10$$
, $t_2 + 3t_3 + 6t_4 = 49$.

Hence,

$$35t_4 = 35, \quad t_4 = 7, \quad t_2 = 1.$$

The type is $[8 * 8; 4^7, 3^2, 2]$ or its associates.

16.3 case $\beta = 7$

Then $r = 11, K_S^2 = -3$ and so $\rho_{\nu_1} = 3 - \nu_1$. Hence, $\nu_1 = 3$. Then $\sigma = 6, \rho_{\nu_1} = 0$ and so $\zeta_{\nu_1} = \theta_{\nu_1} = 0$. Then $3B + f = 6, g_0 = 25$ and

$$t_2 + t_3 = 11$$
, $t_2 + 3t_3 = g_0 = 25$.

There exists a solution to the effect that $t_2 = 4, t_3 = 7$ and so the type is $[6*6;3^7,2^4]$ or its associates.

16.4 case $\beta = 8$

Then $r = 12, K_S^2 = -4$ and so $\nu_1 = 2$. In this case, the type is $[4 * 5; 2^{12}]$ or its associates.

Theorem 10 Suppose that g = 0 and $P_2[D] = 2$. Then $Z^2 = 0$ and

- 1. if $D^2 = -5$ then the type is either $[12 * 12; 6^7, 5, 4]$ or $[10 * 11; 5^9]$ or their associates.
- 2. If $D^2 = -6$ then the type is $[6*7;3^{10}]$ or $[8*8;4^7,3^2,2]$ or their associates.
- 3. If $D^2 = -7$ then the type is $[6*6;3^7,2^4]$ or its associates.
- 4. If $D^2 = -8$ then the type is $[4*5;2^{12}]$ or its associates.

16.5 curves parametrized by polynomials

Remark 3 Rational curves C defined by parametrized $x = f(t) = t^n + a_1t^{n-1} + \cdots + a_n, y = g(t) = t^m + b_1t^{m-1} + \cdots + b_m, (n > m \ge 4, n \ge 6)$, where the a_j and the b_k are general, have $\sigma = m$ and Kodaira dimension 2, except for (n,m) = (6,5), (7,4), (6,4), (8,4).

The invariant D^2 is given by the following formula:

(1)
$$n = m - 1 \ge 6$$
. Then

$$D^2 = -n^2 + 6n - 4$$
, $Z^2 = \frac{n^2 - 9n + 16}{2}$.

(2)
$$n = mq_0 + r_0, 0 \le r_0 < m, 2r_0 \le m$$
 Then

$$D^{2} = -(n-2)(m-2) + 2\delta(n,m) + q^{*}(n,m),$$

$$Z^{2} = R(m,r_{0}) + 2(n-2)(m-2) - 2\delta(n,m).$$

(3)
$$n = mq_0 + r_0, 0 \le r_0 < m, m = r_0 + r_1, r_1 < r_0$$
. Then

$$D^{2} = -(n-2)(m-2) + 2\delta(n,m) + q^{*}(m,r_{1}).$$

2

²Note that the similar result was obtained by S.Usuda, independently.

17 rational curves with Q = 1, 2

While $\sigma \geq 4$, $Q = (2Z - D)^2 \geq 0$ has been established and so we shall investigate the type of pairs with small Q. By Proposition 11, if Q = 0 then $\sigma = 4$ and vice versa. By definition, $4Z^2 + 8 + D^2 = Q$. Hence, $Q - 8 + \beta = 4Z^2 \geq 0$; thus $\beta \geq 8 - Q$.

• When $\nu_1 \geq 3$, we get $(3Z - 2D) \cdot (2Z - D) \geq 0$. Hence,

$$(3Z - 2D) \cdot (2Z - D) = 3(Q + \beta - 8) + 28 - 4\beta \ge 0,$$

and so

$$3Q - \beta + 4 > 0$$
.

Hence, $3Q + 4 \ge \beta$.

Suppose that Q = 1. Then $\beta = 7$ and $Z^2 = 0$. By Theorem 10, the type turns out to be $[6*6;3^7,2^4]$.

• When $\nu_1 < 2$, we obtain

$$1 = Q = (2Z - D)^2 = (\sigma - 4)(B\sigma + 2f - 8).$$

From this, it follows that $\sigma=5, f=7, g_0=14$ and the type is $[5*7,1;2^{14}]$, where $D^2=-11, r=14, K^2=-6, Z^2=-6+11-4=1$.

Suppose that Q=2. If $\nu_1 \geq 3$, then $3 \cdot 2 - \beta + 4 \geq 0$, and so $10 - \beta \geq 0$. But from $4Z^2 + 8 - \beta = 2$, it follows that $\beta = 4Z^2 + 6 = 6$ or 10. So if $\beta = 6$, then $Z^2 = 0$. By Theorem 10, the type becomes $[6*7;3^{10}]$ or $[8*8;4^7,3^2,2]$ or their associates.

If $\beta=10$, then $Z^2=1=K^2-D^2-4=K^2+10-4$, $K^2=-5$ and r=13. Moreover, $\xi_0=12-13=-1$, $\alpha=-4+10=6$, $\xi_2=\sigma+f+\frac{B\sigma}{2}-(\xi_2-1)p$. It is not difficult to see that p=0 and $\eta=0$. Thus

$$\zeta = -2\nu_1 + 6 = F(\nu_1) > \nu_1 - 3.$$

Therefore, $\nu_1=3$ and so $\sigma=6, g_0=25, t_2+t_3=13, t_2+3t_3=25$. From this $t_2=7, t_3=6$. The type is $[6*6; 3^6, 2^7]$ or its associates , where $r=13, D^2=72-54-28=-10, Z^2=8-13+10-4=1$.

When $\nu_1 \leq 2$, we obtain $2 = Q = (\sigma - 4)(B\sigma + 2f - 8)$. Hence, it follows that $\sigma = 5$, f = 5, $g_0 = 16$ and the type is $[5*5;2^{16}]$ or $[5*10,2;2^{16}]$, where r = 16, $D^2 = 50 - 64 = -14$, $Z^2 = 8 - 16 + 14 - 4 = 2$.

Combining Proposition 10 with the above argument, we establish the following result.

Theorem 11 Assume that Q = 1. Then

- 1. the type is $[6*6;3^7,2^{\varepsilon}]$, where $\varepsilon \leq 4$ or
- 2. the type is $[5*7,1;2^r]$ or
- 3. the type is [7;1] or their associates, or
- 4. the type is [5; 1] or
- 5. the type is [3*5,1;1].

Assume that Q = 2. Then

- 1. the type is $[8*8;4^7,3^2,2^{\varepsilon'}]$, where $\varepsilon' \leq 1$ or their associates or
- 2. the type is $[6*7;3^{10}]$ or their associates, or
- 3. the type is $[6*6;2^{\varepsilon},3^{6}]$ where $g=7-\varepsilon$ and $D^{2}=4g-10$ or their associates, or
- 4. the type is $[5*5;2^r]$,
- 5. the type is $[5*10,2;2^r]$ where g = 16 r and $D^2 = 50 4r = 4g 14$ or
- 6. the type is $[5*5;2^r]$ or $[5*10,2;2^r]$ or their associates or
- 7. the type is [3*3;1].

Suppose that $Z^2 = 1$ and g(D) = 0. Then $Q = 4Z^2 + 8 + D^2 = 12 - \beta$. Hence, the next result follows immediately.

Corollary 6 Suppose that $Z^2 = 1$ and g(D) = 0.

If $\beta = -D^2 = 11$ then Q = 1 and thus the type is $[5*7, 1; 2^{14}]$.

If $\beta = 10$ then Q = 2 and thus the type is $[6*6; 3^6, 2^7]$ or their associates.

18 inequalities between Z^2 and D^2

For rational curves D, the following inequalities hold between \mathbb{Z}^2 and \mathbb{D}^2 .

Proposition 17 Suppose that g = 0 and $\kappa[D] = 2$. If $\nu_1 \leq 2$ and $\kappa[D] = 2$ then

$$Z^{2} = \frac{-(\sigma - 3)}{2(\sigma - 2)}D^{2} + \frac{-\sigma^{2} + 5\sigma - 8}{\sigma - 2},$$
$$P_{2}[D] = Z^{2} + 2 = \frac{-(\sigma - 3)}{2(\sigma - 2)}D^{2} + \frac{-\sigma^{2} + 7\sigma - 12}{\sigma - 2}.$$

In particular, if
$$\sigma = 4$$
 then $Z^2 = \frac{-D^2}{4} - 2$, $P_2[D] = Z^2 + 2 = \frac{-D^2}{4}$.
If $\sigma = 5$ then $Z^2 = \frac{-D^2 - 8}{3}$, $P_2[D] = \frac{-D^2 - 2}{3}$.

Now we introduce the following regions

$$U_I = \{(x, y) \mid 4y > x - 8, 3y < x - 8\}$$

that is called vacant region I.

Define $R(\beta, Z^2) = \{(\beta, Z^2) \mid \text{ for pairs } (S, D) \text{ with rational } D\}$. Then from the previous result, we obtain

$$R(\beta, Z^2) \cap U_I = \emptyset.$$

18.1 curves parametrized by polynomials

Remark 4 Rational curves C defined by parametrized $x = f(t) = t^n + a_1t^{n-1} + \cdots + a_n, y = g(t) = t^m + b_1t^{m-1} + \cdots + b_m, (n > m \ge 4, n \ge 6)$, where the a_j and the b_k are general, have $\sigma = m$ and Kodaira dimension 2, except for (n, m) = (6, 5), (7, 4), (6, 4), (8, 4).

The invariant D^2 is given by the following formula:

(1) n = m - 1 > 6. Then

$$D^2 = -n^2 + 6n - 4$$
, $Z^2 = \frac{n^2 - 9n + 16}{2}$.

(2) $n = mq_0 + r_0, 0 \le r_0 < m, 2r_0 \le m$ Then

$$D^{2} = -(n-2)(m-2) + 2\delta(n,m) + q^{*}(n,m),$$

$$Z^{2} = R(m,r_{0}) + 2(n-2)(m-2) - 2\delta(n,m).$$

(3)
$$n = mq_0 + r_0, 0 < r_0 < m, m = r_0 + r_1, r_1 < r_0$$
. Then

$$D^{2} = -(n-2)(m-2) + 2\delta(n,m) + q^{*}(m,r_{1}).$$

3

³Note that the similar result was obtained by S.Usuda, independently.

$-D^2$	Z^2	n	m	$-D^2$	Z^2	n	m
4	-1	6	4	20	4	8	6
4	-1	7	4	20	4	8	7
4	-1	8	4	20	4	11	5
4	-1	6	5	22	5	9	6
8	0	9	4	24	4	17	4
11	1	7	5	26	6	12	5
11	1	7	6	28	5	18	4
12	1	10	4	28	5	19	4
12	1	11	4	28	5	20	4
12	1	12	4	28	7	10	6
14	2	8	5	28	7	11	6
14	2	9	5	28	7	12	6
14	2	10	5	29	7	13	5
16	2	13	4	29	7	14	5
20	3	14	4	29	7	15	5
20	3	15	4	31	8	9	7
20	3	16	4	31	8	9	8

Table 1: data of polynomial curves

18.2 curves parametrized by torus polynomials (*)

Here elements of $k[t, \frac{1}{t}]$ are said to be torus polynomials.

Let us consider rational curves C parametrized by torus polynomials

$$x = f(t) = t^{n} + a_{n-1}t^{n-1} + \dots + a_0 + a_{-1}\frac{1}{t} + \dots + a_{-n}\frac{1}{t^{n}},$$
$$y = g(t) = t^{m} + b_{-1}t^{m-1} + \dots + b_0 + b_{-1}\frac{1}{t} + \dots + b_{-m}\frac{1}{t^{m}},$$

where the a_j and the b_k are general. Under the assumption $n > m \ge 2$ have $\sigma = 2m$ and Kodaira dimension 2, except for (n, m) = (6, 5), (7, 4), (6, 4), (8, 4).

19 curves with $P_2[D] = 3$

Next, the complete list of types of pairs (S, D) such that $P_2[D] = 3$ will be given. (The same result was obtained by S.Usuda independently at the same time.)

If $\kappa[D] = 2$, g(D) = 0, $P_2[D] = 3$, i.e., $Z^2 = 1$, then $K_S^2 - D^2 = 5$ and so $\beta = r - 3$. But since $8 - r = K_S^2 \le -1$, we get $\beta = r - 3 \ge 9 - 3 = 6$. Furthermore, by definition

$$\rho_{\nu_1} = (\nu_1 Z - (\nu_1 - 1)D) \cdot (2Z - D) = 8\nu_1 - 4 - (\nu_1 - 1)\beta = (8 - \beta)\nu_1 + (\nu_1 - 1)\beta - 4.$$

First, we treat the case of curves with only double points.

Proposition 18 If g = 0, $\nu_1 = 2$, $Z^2 = 1$ then the type is 1) $[4 * 6; 2^{15}]$ or its associates, where $D^2 = -12$, or 2) $[5 * 7, 1; 2^{14}]$, where $D^2 = -11$.

Proof: From $6 = (\sigma - 3)(B\sigma + 2f - 6)$, we have two cases 1) $\sigma - 3 = 1$ and 2) $\sigma - 3 = 2$.

case 1) $\sigma - 3 = 1$. Then $B\sigma + 2f - 6 = 6$ and so 3B + f = 6. The type is $[4 * 6; 2^{15}]$ or its associates.

case 2) $\sigma - 3 = 2$. Then $B\sigma + 2f - 6 = 3$ and so 5B + 2f = 9. Therefore, B = 1, f = 2 and the type is $[5 * 7, 1; 2^{14}]$.

Second, we treat the case of curves with $\nu_1 = 3$.

Proposition 19 If $g = 0, \nu_1 = 3, Z^2 = 1$ then

$$\tau_5 = (\sigma - 5)(B\sigma + 2f - 10) = 2(14 - r).$$

Proof: Here, we shall prove the following formula:

If
$$\nu_1 = 3, K^2 = 8 - r$$
 and $\beta = -D^2$, then

$$\tau_5 = 10(g+4) + 4\beta - 6r.$$

In order to verify this, first consult genus formula and compute D^2 :

$$t_2 + t_3 = r$$
, $t_2 + 3t_3 = g_0 - g$, $4t_2 + 9t_3 = C^2 + \beta$.

Then

$$2t_3 = q_0 - q - r, 5t_3 = C^2 + \beta - 4r,$$

and thus

$$5(g_0 - g - r) = 2(C^2 + \beta - 4r).$$

Since $2g_0 - 2 = Z_0 \cdot C$, it follows that

$$5Z_0 \cdot C + 10 - 4C^2 = 10g + 4\beta - 6r,$$

and by Formula I(Lemma 3)

$$\tau_5 = (5Z_0 - 4C) \cdot C + 50 = 10(q+4) + 4\beta - 6r.$$

Remark 5 Replacing β by $Z^2 + r - 4g - 4$, we obtain

$$\tau_5 = 24 + 4Z^2 - 6g - 2r.$$

Claim 7 $g_0 \leq 3r$, provided that $\nu_1 = 3$ and g = 0.

Proof: The genus formula implies that

$$t_2 + t_3 = r$$
, $t_2 + 3t_3 = g_0$.

Then $g_0 - r = 2t_3 \le 2r$. Hence, $g_0 \le 3r$.

The next result is easily verified.

Claim 8

$$B\sigma + 2f - 10 \ge \sigma - 5$$
.

Since $t_3 > 0$, it follows that $\sigma \ge 6$ and hence, r < 14. But $r = \beta + 3 \ge 9$. Thus we have the following five cases:

(1) r = 13. Then $\tau_5 = (\sigma - 5)(B\sigma + 2f - 10) = 2$. Hence, $\sigma - 5 = 1, B\sigma + 2f - 10 = 2$. Thus $\sigma = 6$ and 3B + f = 6, which implies $g_0 = 25$. By genus formula

$$t_2 + t_3 = 13$$
, $t_2 + 3t_3 = 25$.

Hence, $2t_3 = 12$; $t_3 = 6$, $t_2 = 7$. The type is $[6 * 6; 3^6, 2^7]$ or its associates.

(2) r = 12. Then $\tau_5 = (\sigma - 5)(B\sigma + 2f - 10) = 4$. Hence, a) $\sigma - 5 = 1, B\sigma + 2f - 10 = 4$; or b) $\sigma - 5 = 2, B\sigma + 2f - 10 = 2$.

In the case (2.a), we get $\sigma = 6$ and 3B + f = 7, which implies $g_0 = 30$. By genus formula

$$t_2 + t_3 = 12$$
, $t_2 + 3t_3 = 30$.

Hence, $2t_3 = 18$; $t_3 = 9$, $t_2 = 3$. The type is $[6 * 7; 3^9, 2^3]$ or its associates. In the case (2.b), we get $\sigma = 7$ and 7B + 2f = 12, a contradiction.

(3) r = 11. Then $\tau_5 = (\sigma - 5)(B\sigma + 2f - 10) = 6$. Hence, a) $\sigma - 5 = 1$, $B\sigma + 2f - 10 = 6$; or b) $\sigma - 5 = 2$, $B\sigma + 2f - 10 = 3$.

In the case (3.a), we get $\sigma = 6$ and 3B + f = 8

, which implies $g_0 = 35$. By genus formula

$$t_2 + t_3 = 11$$
, $t_2 + 3t_3 = 35$.

Hence, $2t_3 = 24$; $t_3 = 12$; a contradiction.

In the case (3.b), we get $\sigma=7$ and 7B+2f=13 , which implies $B=1, f=3, g_0=33.$ By genus formula

$$t_2 + t_3 = 11$$
, $t_2 + 3t_3 = 33$.

Hence, $2t_3 = 22$; $t_3 = 11$, $t_2 = 0$. The type is $[7 * 10, 1; 3^{11}]$.

(4) r = 10. Then $g_0 \le 3r = 30$ and moreover, $\tau_5 = (\sigma - 5)(B\sigma + 2f - 10) = 8$. Hence, a) $\sigma - 5 = 1$, $B\sigma + 2f - 10 = 8$; or b) $\sigma - 5 = 2$, $B\sigma + 2f - 10 = 4$.

In the case (4.a), we get $\sigma=6$ and 3B+f=9 , which implies $g_0=40;$ a contradiction.

In the case (4.b), we get $\sigma=7$ and 7B+2f=14, which implies $g_0=36$; a contradiction.

(5) r = 9. Then $g_0 \le 3r = 27$ and moreover, $\tau_5 = (\sigma - 5)(B\sigma + 2f - 10) = 10$. Hence, a) $\sigma - 5 = 1$, $B\sigma + 2f - 10 = 10$; or b) $\sigma - 5 = 2$, $B\sigma + 2f - 10 = 5$.

In the case (5.a), we get $\sigma=6$ and 3B+f=10, which implies $g_0=45,$ a contradiction.

In the case (5.b), we get $\sigma = 7$ and 7B + 2f = 15, which implies B = 1, f = 4. Hence, $g_0 = 18 + 21 = 39$; a contradiction.

Thus the following result has been established.

Proposition 20 Suppose that $g=0, \nu_1=3$ and $Z^2=1$. Then r=11,12,13 and

- 1. if r = 13 then the type is $[6*6; 3^6, 2^7]$ or its associates.
- 2. If r = 12 then the type is $[6*7;3^9,2^3]$ or its associates.
- 3. If r = 11 then the type is $[7 * 10, 1; 3^{11}]$.

Owing to the previous result, we may suppose that $\nu_1 \geq 4$. Letting w be $(2Z - D)^2 \geq 0$, we get

$$w = (2Z - D)^2 = 4Z^2 - 4Z \cdot D + D^2 = 12 - \beta.$$

Since in the cases w=0,1,2, all types have been already enumerated in Proposition 10, we may assume $w \geq 3$. Thus we have the following four cases to examine, separately:

(1)
$$\beta = 6$$
, (2) $\beta = 7$, (3) $\beta = 8$, (4) $\beta = 9$.

19.1 case $\beta = 6$

Then $\rho_{\nu_1} = 2\nu_1 + 2$; hence, by Lemma 11,

$$2\nu_1 + 2 = \zeta_{\nu_1} + \theta_{\nu_1}$$
.

First assume that $\theta_{\nu_1} = 0$.

Then $\sigma = 2\nu_1$ and $f + B\nu_1 - 2\nu_1 = 0$ which implies that $g_0 = (2\nu_1 - 1)(f - 1) + B\nu_1(2\nu_1 - 1) = (2\nu_1 - 1)^2$.

$$2\nu_1 + 2 = F(\nu_1) = (\nu_1 - 3)x_1 + 2(\nu_1 - 4)x_2 + 3(\nu_1 - 5)x_3 + \cdots$$

To find the maximal ν_1 , we suppose that $2\nu_1 + 2 \ge 3(\nu_1 - 5)$. Then $\nu_1 \ge 17$.

• case $\nu_1 = 17$. From hypothesis, $x_3 = 1$ and $x_j = 0$ if $j \neq 3$. Therefore, $\sigma = 34$ and $g_0 = 33^2 = 1089$, and moreover,

$$1 = x_3 = t_5 + t_{14}, t_2 + t_{17} + t_5 + t_{14} = 9, t_2 + 136t_{17} + 10t_5 + 91t_{14} = 9,$$
$$135t_{17} + 9t_5 + 90t_{14} = 1080.$$

Therefore,

$$135t_{17} + 81t_{14} = 1080 - 9 = 1071.$$

There exist no solutions.

While $\nu_1 \leq 16$, we get $2\nu_1 + 2 \geq (\nu_1 - 3) + 2(\nu_1 - 4)$, which implies $\nu_1 \geq 13$.

• case $\nu_1 = 13$. From

$$28 = F(13) = 10x_1 + 18x_2 + 24x_3 + 28x_4.$$

Then we get two solutions 1) $x_1 = x_2 = 1, x_j = 0$ and 2) $x_1 = x_2 = x_3 = 0, x_4 = 1$. Therefore, since $\sigma = 26, g_0 = 25^2 = 625$, it follows that in the case 1)

$$1 = x_1 = t_3 + t_{12} = x_2 = t_4 + t_{11},$$

$$t_2 + t_{13} + t_3 + t_{12} + t_4 + t_{11} = 9, \quad t_2 + 78t_{13} + 3t_3 + 66t_{12} + 6t_4 + 55t_{11} = 625,$$

$$77t_{13} + 2t_3 + 65t_{12} + 5t_4 + 54t_{11} = 616,$$

$$77t_{13} + 2 + 63t_{12} + 5 + 49t_{11} = 616,$$

$$77t_{13} + 63t_{12} + 49t_{11} = 609.$$

$$11t_{13} + 9t_{12} + 7t_{11} = 87.$$

The equations have no solutions.

In the case 2),

$$1 = x_4 = t_6 + t_9$$
, $t_2 + t_6 + t_9 + t_{13} = 9$, $t_2 + 78t_{13} + 15t_6 + 36t_9 = 625$.

Hence,

$$77t_{13} + 14t_6 + 35t_9 = 616$$
, $11t_{13} + 2t_6 + 5t_9 = 88$.

Thus,

$$11t_{13} + 3t_9 = 86$$
; $t_9 = -1$.

The equations have no solutions.

• case $\nu_1 = 12$. Then

$$26 = F(12) = 9x_1 + 16x_2 + 21x_3 + 24x_4 + 25x_5 + \cdots$$

The equation has no solutions.

• case $\nu_1 = 11$. Then $\sigma = 22, f = 2\nu_1 - B\nu_1 = 22 - 11B$ and $g_0 = 21^2 = 441$. The equation

$$24 = F(11) = 8x_1 + 14x_2 + 18x_3 + 20x_4$$

has a solution $x_1 = 3$, $x_2 = x_3 = x_4 = 0$. Hence, $t_3 + t_{10} = x_1 = 3$ and so

$$t_2 + t_3 + t_{10} + t_{11} = 9$$
, $t_2 + 3t_3 + 45t_{10} + 55t_{11} = 441$,

$$2t_3 + 44t_{10} + 54t_{11} = 6 + 42t_{10} + 54t_{11} = 432.$$

Thus,

$$42t_{10} + 54t_{11} = 426,$$

and so

$$7t_{10} + 9t_{11} = 71$$
.

But the equation has no solutions.

• case $\nu_1 = 10$. Then $\sigma = 20, f = 2\nu_1 - B\nu_1 = 20 - 10B$ and $g_0 = 19^2 = 361$. The equation

$$22 = F(10) = 7x_1 + 12x_2 + 15x_3 + 16x_4$$

has a solution $x_1 = 1$, $x_2 = x_4 = 0$, $x_3 = 1$. Hence, $t_3 + t_9 = t_5 + t_7 = 1$ and so

$$t_2 + t_3 + t_9 = t_5 + t_7 + t_{10} = 9$$
, $t_2 + 3t_3 + 36t_9 + 10t_5 + 21t_7 + 45t_{10} = 361$,

$$2t_3 + 35t_9 + 9t_5 + 20t_7 + 44t_{10} = 352$$
.

Thus,

$$2 + 33t_9 + 9 + 11t_7 + 44t_{10} = 352,$$

and so

$$33t_9 + 11t_7 + 44t_{10} = 341.$$

Hence,

$$3t_9 + t_7 + 4t_{10} = 31.$$

The equation has a solution $t_9 = 1, t_7 = 0, t_{10} = 7, t_5 = 1$. The type is $[20 * 20; 10^7, 9, 5]$ or its associates.

• case $\nu_1 = 9$. Then $\sigma = 18$, $f = 2\nu_1 - B\nu_1 = 18 - 9B$ and $g_0 = 17^2 = 289$. The equation

$$20 = F(9) = 6x_1 + 10x_2 + 12x_3$$

has a solution $x_2 = 2, x_1 = x_3 = 0$ and hence,

$$t_4 + t_7 = 2$$
, $t_2 + t_9 + t_4 + t_7 = 9$, $t_2 + 36t_9 + 6t_4 + 21t_7 = 289$,

$$35t_9 + 5t_4 + 20t_7 = 280, \quad 35t_9 + 15t_7 = 270.$$

Hence, $7t_9 + 3t_7 = 54$, and then $t_9 = 6$, $t_7 = 4$; a contradiction.

• case $\nu_1 = 8$. Then $\sigma = 16$, $f = 2\nu_1 - B\nu_1 = 16 - 8B$ and $g_0 = 15^2 = 225$. The equation

$$18 = F(8) = 5x_1 + 8x_2 + 9x_3$$

has two solutions 1) $x_3 = 2$, and 2) $x_1 = 2$, $x_2 = 1$.

In case 1), $t_5 = x_3 = 2$ and

$$t_2 + t_8 + t_5 = 9$$
, $t_2 + 28t_8 + 10t_5 = 225$.

Hence,

$$27t_8 + 9t_5 = 216; \quad 3t_8 + t_5 = 24.$$

Then $3t_8 = 24 - 2 = 22$, a contradiction.

In case 2), $t_3 + t_7 = 2$, $t_4 + t_6 = 1$ and so

$$t_2 + t_8 + t_3 + t_7 + t_4 + t_6 = 9$$
, $t_2 + 28t_8 + 3t_3 + 21t_7 + 6t_4 + 15t_6 = 225$.

Hence,

$$27t_8 + 2t_3 + 20t_7 + 5t_4 + 14t_6 = 216$$
 $27t_8 + 4 + 18t_7 + 5 + 9t_6 = 216$.

Then $27t_8 + 18t_7 + 9t_6 = 207$; hence, $3t_8 + 2t_7 + t_6 = 23$. There exists one solution $t_8 = 6, t_7 = 2, t_6 = 1$. The type is $[16 * 16; 8^6, 7^2, 6]$ or its associates.

• case $\nu_1 = 7$. Then $\sigma = 14$, $f = 2\nu_1 - B\nu_1 = 14 - 7B$ and $g_0 = 13^2 = 169$. The equation

$$16 = F(7) = 4x_1 + 6x_2$$

has two solutions : 1) $x_1 = 4$ and 2) $x_1 = 1, x_2 = 2$.

In case 1), $t_3 + t_6 = x_1 = 4$ and

$$t_2 + t_7 + t_3 + t_6 = 9$$
, $t_2 + 21t_7 + 3t_3 + 15t_6 = 169$.

Hence, $20t_7 + 2t_3 + 14t_6 = 160$.

$$20t_7 + 12t_6 = 152;$$
 $5t_7 + 3t_6 = 38.$

Then $t_7 = 7, t_6 = 1, t_3 = 3$; a contradiction.

In case 2),
$$t_3 + t_6 = x_1 = 1$$
, $t_4 + t_5 = x_2 = 2$ and

$$t_2 + t_7 + t_3 + t_6 + t_4 + t_5 = 9$$
, $t_2 + 21t_7 + 3t_3 + 15t_6 + 6t_4 + 10t_5 = 169$.

Hence, $20t_7 + 2t_3 + 14t_6 + 5t_4 + 9t_5 = 160$, $20t_7 + 2 + 12t_6 + 10 + 4t_5 = 160$ and so $20t_7 + 12t_6 + 4t_5 = 148$; thus $5t_7 + 3t_6 + t_5 = 37$. There exists no solution.

• case $\nu_1 = 6$. Then $\sigma = 12$, $f = 2\nu_1 - B\nu_1 = 12 - 6B$ and $g_0 = 11^2 = 121$. The equation

$$14 = F(6) = 3x_1 + 4x_2$$

has one solution $x_1 = x_2 = 2$ and hence $t_3 + t_5 = x_1 = 2, t_4 = x_2 = 2$ and so

$$t_2 + t_6 + t_3 + t_5 + t_4 = 9$$
, $t_2 + 15t_6 + 3t_3 + 10t_5 + 6t_4 = 121$.

Hence,

$$14t_6 + 2t_3 + 9t_5 + 5t_4 = 112$$
, $14t_6 + 4 + 7t_5 + 10 = 112$.

Therefore, $2t_6 + t_5 = 14$; hence, $t_6 = 7$, $t_5 = 0$, $t_3 + t_5 = 2$, $t_4 = 2$, $t_3 = 2$, $t_7 > 9$; a contradiction.

• case $\nu_1 = 5$. Then $\sigma = 10, f = 2\nu_1 - B\nu_1 = 10 - 5B$ and $g_0 = 81$. The equation $12 = F(5) = 2x_1$ has a solution $x_1 = 6$ and so $t_3 + t_4 = x_1 = 6$. Hence,

$$t_2 + t_5 + t_3 + t_4 = 9$$
; $t_2 + 10t_5 + 3t_3 + 6t_4 = 81$.

Therefore,

$$t_2 + t_5 = 3;$$
 $3 + 9t_5 + 3 \cdot 6 + 3t_4 = 81.$

Hence, $9t_5 + 3t_4 = 60$; $3t_5 + t_4 = 20$. But $3t_5 + t_4 \le 9 + 6 = 15 < 20$; a contradiction.

• case $\nu_1 = 4$. If $\nu_1 = 4$ then $10 = F(4) = x_1 = t_3 > 9$; a contradiction.

19.1.1 case p > 0.

Second, assume that $p = \sigma - 2\nu_1 > 0$. Then $\tilde{A} = (p+3\nu_1-2)B+2f-2\nu_1-4$ and assume $\nu_1 \geq 4$.

We shall study in the following cases : 1) B=0, 2 B=1, 3 $B\geq 2$ separately.

case 1) B = 0. Then $\tilde{A} = 2f - 2\nu_1 - 4$, $f = \sigma + u = p + 2\nu_1 + u$, $\gamma = 2(\nu_1 - 2)(u + p)$, where p > 0, $u \ge 0$.

From

$$2\nu_1 + 2 = \zeta + (2p + 2u + 2\nu_1 - 4)p + 2(\nu_1 - 2)(u + p),$$

it follows that

$$\zeta = 2(1 - u - 2p)\nu_1 + 8p + 4u - 4p^2 - 4pu + 2.$$

By $\nu_1 \geq 4$,

$$\zeta \le 8(1 - u - 2p)\nu_1 + 8p + 4u - 4p^2 - 4pu + 2 = 10 - 8p - 2p^2 - 2pu - 4u.$$

Hence, $p = 1, u = 0, \zeta = 0, \nu_1 = 4$; thus $\sigma = 9, g_0 = 64, t_3 = 0$. By genus formula

$$t_2 + t_3 + t_4 = 9$$
, $t_2 + 3t_3 + 6t_4 = 64$.

Thus $5t_4 = 55, t_4 = 11$; a contradiction.

case 2) B = 1. Then $\tilde{A} = p + 3\nu_1 - 2 + 2u - 4 = p + 3\nu_1 + 2u - 6, f = <math>\nu_1 + u, \gamma = 2(\nu_1 - 2)u$, where $p > 0, u \ge 0$. Thus

$$\zeta_{\nu_1} = (2 - 3p - 2u)\nu_1 + 2 + 4u + (6 - p - 2u)p$$
.

By $\nu_1 \geq 4$,

$$0 \le \zeta_{\nu_1} \le 8 - 12p - 8u + 2 + 4u + (6 - p - 2u)p = 10 - 6p - 4u - (p + 2u)p$$
.

Therefore, p=1, u=0.

Hence, $\zeta_{\nu_1} = 7 - \nu_1$. Recalling the definition of ζ_{ν_1} , we obtain

$$\zeta_{\nu_1} = 7 - \nu_1 = F(\nu_1) = (\nu_1 - 3)x_1 + \cdots$$

• If $\zeta_{\nu_1} = 0$ then $\nu_1 = 7, t_3 = \dots = t_6 = 0$ and so $\sigma = 15, f = 7$. Therefore, $g_0 = 14 \cdot 6 + 7 \cdot 15 = 189$. By genus formula,

$$t_2 + t_7 = 9$$
, $t_2 + 21t_7 = 189$.

From this, it follows that $t_2 = 0, t_7 = 9$. Hence, the type is $[15 * 22, 1; 7^9]$.

• If $\zeta_{\nu_1} > 0$ then $7 - \nu_1 = F(\nu_1) \ge (\nu_1 - 3)$. Hence, $\nu_1 \le 5$. Thus here are two cases:

case (1) $\nu_1 = 5$. Then $\sigma = 11, f = 5, g_0 = 95$. Since $7 - \nu_1 = 2 = F(5) = 2x_1$, it follows that $x_1 = t_3 + t_4 = 1$. By genus formula

$$t_2 + t_5 + t_3 + t_4 = 9$$
, $t_2 + 10t_5 + 3t_3 + 6t_4 = 95$.

This yields $t_4 + 3t_5 = 28$ and so $t_5 = 9, t_4 = 1, r \ge 10$; a contradiction. case (2) $\nu_1 = 4$. Then $\sigma = 9, f = 4, g_0 = 60$. Since $7 - \nu_1 = 3 = F(4) = x_1$, it follows that $x_1 = t_3 = 3$. By genus formula

$$t_2 + t_3 + t_4 = 9$$
, $t_2 + 3t_3 + 6t_4 = 60$.

Hence, $2t_3 + 5t_4 = 51$; $5t_4 = 45$, $t_4 = 9$, r > 9 + 3 = 12, which is a contradiction.

case 3) $B \ge 2$. Then we can derive a contradiction by the same argument as before.

19.1.2 case p = 0.

Third, assume that $\sigma = 2\nu_1$. Then $\gamma = 2(\nu_1 - 2)(f + \nu_1 B - 2\nu_1) > 0$.

We shall study in the following cases : 1) $B=0,\,2)$ $B=1,\,3)$ $B\geq 2,$ separately.

case 1) B = 0: $f = \sigma + u = 2\nu_1 + u$ and $\gamma = 2(\nu_1 - 2)u > 0$. Hence, $2\nu_1 + 2 = \zeta + 2(\nu_1 - 2)u$, i.e., $\zeta = 2(1 - u)\nu_1 + 2 + 4u$.

In the case when u = 1, we get $\zeta = 6$. Thus $6 = F(\nu_1) \ge \nu_1 - 3$. Hence, $\nu_1 \le 9$. We shall examine the following 7 cases separately.

• case $\nu_1 = 9$.

Then $6 = F(9) = (9-3)x_1$ and so $t_3 + t_8 = x_1 = 1$. Further, $\sigma = 18, f = 19, g_0 = 17 \cdot 18 = 306$. By genus formula,

$$t_3 + t_8 + t_2 + t_9 = 9$$
, $3t_3 + 28t_8 + t_2 + 36t_9 = 306$,

$$2t_3 + 27t_8 + 35t_9 = 297$$
, $25t_8 + 35t_9 = 295$.

Hence, $5t_8 + 7t_9 = 59$; a contradiction.

• case $\nu_1 = 8$.

Then $6 = F(8) = 5x_1 + 8x_2 + 9x_3 + \cdots$, which has no solutions.

• case $\nu_1 = 7$.

Then $6 = F(7) = 4x_1 + 6x_2$, which has a solution $t_3 + t_6 = x_1 = 0, t_4 + t_5 = x_2 = 1$.

Further, $\sigma = 14, f = 15, g_0 = 13 \cdot 14 = 182$. By genus formula,

$$t_4 + t_5 + t_2 + t_7 = 9$$
, $6t_4 + 10t_5 + t_2 + 21t_7 = 182$,

$$5t_4 + 9t_5 + 20t_7 = 173, \quad 4t_5 + 20t_7 = 173 - 5 = 168.$$

Hence, $t_5 + 5t_7 = 42$; a contradiction.

• case $\nu_1 = 6$.

Then $6 = F(7) = 3x_1 + 4x_2$, which has a solution $t_3 + t_5 = x_1 = 2, t_4 = x_2 = 0$.

Further, $\sigma = 12, f = 13, g_0 = 11 \cdot 12 = 132$. By genus formula,

$$t_3 + t_5 + t_2 + t_6 = 9$$
, $3t_3 + 10t_5 + t_2 + 15t_6 = 132$,

$$2t_3 + 9t_5 + 14t_6 = 123, \quad 7t_5 + 14t_6 = 119,$$

Hence, $t_5 + 2t_6 = 17$; a contradiction.

case $\nu_1 = 5$.

Then $6 = F(5) = 2x_1$, which has a solution $t_3 + t_4 = x_1 = 3$. Further, $\sigma = 10, f = 11, g_0 = 9 \cdot 10 = 90$. By genus formula,

$$t_3 + t_4 + t_2 + t_5 = 9$$
, $3t_3 + 6t_4 + t_2 + 10t_5 = 90$,

$$2t_3 + 5t_4 + 9t_5 = 81$$
, $3t_4 + 9t_5 = 75$.

Hence, $t_4 + 3t_5 = 25$,; a contradiction.

• case $\nu_1 = 4$.

Then $6 = F(4) = x_1$, which has a solution $t_3 = x_1 = 6$. Further, $\sigma = 8, f = 9, g_0 = 7 \cdot 8 = 56$. By genus formula,

$$t_3 + t_2 + t_4 = 9$$
, $t_2 + t_4 = 3$, $3t_3 + t_2 + 6t_4 = 56$.

Hence, $2t_3 + 5t_4 = 47$, $5t_4 = 47 - 12 = 35$, $t_4 = 7$; a contradiction.

In the case when u = 2, $\zeta = 10 - 2\nu_1$. Thus $10 - 2\nu_1 = F(\nu_1) \ge \nu_1 - 3$. Hence, $\nu_1 \le 4$ and so $\nu_1 = 4$. Therefore, $2 = F(4) = x_1 = t_3$. Further, $\sigma = 8, f = 10, g_0 = 7 \cdot 9 = 63$.

By genus formula,

$$t_3 + t_2 + t_4 = 9$$
, $t_2 + t_4 = 7$, $3t_3 + t_2 + 6t_4 = 63$.

 $2t_3 + 5t_4 = 54$, $5t_4 = 54 - 4 = 50$, $t_4 = 8$, a contradiction.

In the case when u = 3, $2\nu_1 + 2 = \zeta = 14 - 4\nu_1$. Hence, $\nu_1 = 2$.

case 2)
$$B = 1$$
: $f = \nu_1 + u$ and $\gamma = 2(\nu_1 - 2)u > 0$. Hence, $2\nu_1 + 2 = \zeta + 2(\nu_1 - 2)u$, i.e., $\zeta = 2(1 - u)\nu_1 + 2 + 4u$.

case 3)
$$B \ge 2$$
: $f = u$ and $\gamma = 2(\nu_1 - 2)(f + \nu_1 B - 2\nu_1) > 0$. When $B = 2$, $2\nu_1 + 2 = \zeta + 2(\nu_1 - 2)u$, i.e., $\zeta = 2(1 - u)\nu_1 + 2 + 4u$.

In both cases, we are able to derive contradictions.

19.2 case $\beta = 7$

Then $\rho_{\nu_1} = \nu_1 + 3$; Hence, by Lemma 11,

$$\nu_1 + 3 = \zeta_{\nu_1} + \theta_{\nu_1}$$
.

First assume that $\theta_{\nu_1} = 0$.

Then $\sigma = 2\nu_1$ and $f + B\nu_1 - 2\nu_1 = 0$.

$$\nu_1 + 3 = F(\nu_1) = (\nu_1 - 3)x_1 + 2(\nu_1 - 4)x_2 + 3(\nu_1 - 5)x_3 + \cdots$$

To find the maximal ν_1 , we suppose that $\nu_1 + 3 \ge 2x_2(\nu_1 - 4)$. Then $\nu_1 \ge 11$.

• case $\nu_1 = 11$. From hypothesis, $x_2 = 1$ and $x_j = 0$ if $j \neq 2$. Therefore, since $\sigma = 22, g_0 = 21^2 = 441$,

$$1 = x_2 = t_4 + t_9, t_4 + t_9 + t_2 + t_{11} = 10, 6t_4 + 36t_9 + t_2 + 55t_{11} = 441.$$

$$5t_4 + 35t_9 + 54t_{11} = 431; 5 + 30t_9 + 54t_{11} = 431.$$

Therefore, $30t_9 + 54t_{11} = 426, 5t_9 + 9t_{11} = 71$. There exist no solutions.

• case $\nu_1 = 10$.

$$13 = F(10) = 7x_1 + 12x_2$$
.

There exist no solutions.

• case $\nu_1 = 9$ Then $\sigma = 18, g_0 = 17^2 = 289$.

$$12 = F(9) = 6x_1 + 10x_2 + 12x_3.$$

There exist two solutions (1) $t_3 + t_8 = x_1 = 2$ and (2) $t_5 + t_6 = x_3 = 1$. In case (1),

$$t_3 + t_8 = 2$$
, $t_3 + t_8 + t_2 + t_9 = 10$, $3t_3 + 28t_8 + t_2 + 36t_9 = 289$.

Hence, $2t_3 + 27t_8 + 35t_9 = 279$; $5t_8 + 7t_9 = 55$, a contradiction. In case (2),

$$t_5 + t_6 = 1, t_5 + t_6 + t_2 + t_9 = 10, 10t_5 + 15t_6 + t_2 + 36t_9 = 289.$$

Hence, ; $t_6 + 7t_9 = 54$, a contradiction.

• case $\nu_1 = 8$.

$$11 = F(8) = 5x_1 + 8x_2 + 9x_3$$
.

There exist no solutions.

• case $\nu_1 = 7$ Then $\sigma = 14, g_0 = 13^2 = 169$ and hence we get

$$10 = F(7) = 4x_1 + 6x_2$$
.

Then $x_1 = x_2 = 1$. Hence, $t_3 + t_6 = x_1 = t_4 + t_5 = x_2 = 1$. Thus

$$t_3 + t_6 + t_4 + t_5 + t_2 + t_7 = 10$$
, $3t_3 + 15t_6 + 6t_4 + 10t_5 + t_2 + 21t_7 = 169$.

Hence, $2t_3 + 14t_6 + 5t_4 + 9t_5 + 20t_7 = 159, 12t_6 + 4t_5 + 20t_7 = 152$.

Therefore, $3t_6 + t_5 + 5t_7 = 38$. Then $t_6 = 1, t_5 = 0, t_7 = 7$ and the type is $[14 * 14; 7^7, 6, 4, 2]$.

• case $\nu_1 = 6$ Then $\sigma = 12, g_0 = 11^2 = 121$ and hence we get

$$9 = F(6) = 3x_1 + 4x_2$$
.

Then $x_1 = 3$. Hence, $t_3 + t_5 = x_1 = 3$. Thus

$$t_3 + t_5 + t_2 + t_6 = 10$$
, $3t_3 + 10t_5 + t_2 + 15t_6 = 121$.

Hence, $2t_3 + 9t_5 + 14t_6 = 111, 2 + 7t_5 + 14t_6 = 111; t_5 + 2t_6 = 15$.

Therefore, we have two cases (1) $t_5 = 1$, $t_6 = 7$ and (2) $t_5 = 3$, $t_6 = 6$. In case (1), the type is $[12 * 12; 6^7, 5, 3^2]$ or its associates and in case (2), the type is $[12 * 12; 6^6, 5^3, 2]$ or its associates.

• case $\nu_1 = 5$ Then $\sigma = 10, g_0 = 9^2 = 81$ and hence we get

$$8 = F(5) = 2x_1$$
.

Then $x_1 = 4$. Hence, $t_3 + t_4 = x_1 = 4$. Thus

$$t_3 + t_4 + t_2 + t_5 = 10$$
, $3t_3 + 6t_4 + t_2 + 10t_5 = 81$.

Hence,

$$2t_3 + 5t_4 + 9t_5 = 71; 3t_4 + 9t_5 = 71 - 8 = 63.$$

Therefore, $t_4 + 3t_5 = 21$; Hence, $t_5 = 6, t_4 = 3, t_3 = 1$ and the type is $[10 * 10; 5^6, 4^3, 3]$ or its associates.

• case $\nu_1 = 4$ Then $\sigma = 8, g_0 = 7^2 = 49$ and hence we get

$$7 = F(3) = t_3$$
.

Thus

$$t_3 + t_2 + t_4 = 10$$
, $3t_3 + t_2 + 6t_4 = 49$.

Therefore, $t_2 + t_4 = 3,21 + 3 + 5t_4 = 49; 5t_4 = 25; t_4 = 5;$ a contradiction.

19.2.1 case $\theta_{\nu_1} > 0$

Next assume that $\theta_{\nu_1} > 0, p > 0$.

Then $\nu_1 + 3 = \zeta + \theta \ge 3\nu_1 - 5$; hence, $\nu_1 \le 4$.

When $\nu_1 = 4$, B = 1, $\sigma = 9$; hence, $\zeta = 0$, f = 4. Thus $g_0 = 8 \cdot 3 + 36 = 60$. Therefore,

$$t_2 + t_4 = 10, \quad t_2 + 6t_4 = 60.$$

Hence, $5t_4 = 50$ and so $t_4 = 10, t_2 = 0$. The type is $[9 * 13, 1; 4^{10}]$.

Finally, assume that $\theta_{\nu_1} > 0, p = 0$. Then $\tilde{A} = 0$ and $\nu_1 + 3 = \zeta + \theta_{\nu_1}, \theta_{\nu_1} = \gamma = 2(\nu_1 - 2)(f + \nu_1 B - 2\nu_1) > 0$.

We shall study in the following cases: 1) B = 0, 2) B = 1 and 3) $B \ge 2$, separately.

case 1) B = 0: $f = \sigma + u = 2\nu_1 + u$, $\gamma = 2(\nu_1 - 2)(f - 2\nu_1) = 2(\nu_1 - 2)u$.

case 2) B = 1: $f = \nu_1 + u, \gamma = 2(\nu_1 - 2)(f - \nu_1) = 2(\nu_1 - 2)u$.

case 3) B = 2: $f = u, \gamma = 2(\nu_1 - 2)f = 2(\nu_1 - 2)u$.

In any cases, $\nu_1 + 3 = \zeta + \theta_{\nu_1} \ge 2(\nu_1 - 2)u$ and thus $3 + 4u \ge (2u - 1)\nu_1$. If u = 1 then $\nu_1 \le 7$.

• case $\nu_1 = 7$ Then $\sigma = 14, g_0 = 13 \cdot 14 = 182$. $\zeta = \nu_1 + 3 - \theta_{\nu_1} = \nu_1 + 3 - 2(\nu_1 - 2) = 7 - \nu_1 = 0$. Hence, $t_3 = t_4 = t_5 = t_6 = 0$. By genus formula,

$$t_2 + t_7 = 10$$
, $t_2 + 21t_7 = 182$, $20t_7 = 172$.

• case $\nu_1 = 6$

$$\zeta = \nu_1 + 3 - \theta_{\nu_1} = \nu_1 + 3 - 2(\nu_1 - 2) = 7 - \nu_1 = 1.$$

 $1 = \zeta = 3x_1 + \cdots$, a contradiction.

• case $\nu_1 = 5$ Then $\sigma = 10, g_0 = 9 \cdot 10 = 90$ and hence we get

$$\zeta = \nu_1 + 3 - \theta_{\nu_1} = \nu_1 + 3 - 2(\nu_1 - 2) = 7 - \nu_1 = 2.$$

 $2 = \zeta = 2x_1 + \cdots$. Hence, $t_3 + t_4 = x_1 = 1$.

$$t_3 + t_4 + t_2 + t_5 = 10$$
, $3t_3 + 6t_4 + t_2 + 10t_5 = 90$,

$$2t_3 + 5t_4 + 9t_5 = 80;$$
 $2 + 3t_4 + 9t_5 = 80.$

Therefore, $t_4 + 3t_5 = 26$; hence, $t_4 = 2, t_5 = 8, t_3 = -1$; a contradiction.

• case $\nu_1 = 4$ Then $\sigma = 8, g_0 = 7 \cdot 8 = 56$ and hence we get

$$\zeta = \nu_1 + 3 - \theta_{\nu_1} = \nu_1 + 3 - 2(\nu_1 - 2) = 7 - \nu_1 = 3.$$

Hence, $3 = \zeta = t_3$ and so

$$t_3 + t_4 + t_2 = 10$$
, $3t_3 + 6t_4 + t_2 = 56$,

 $5t_4 = 40; t_4 = 8 > 7;$ a contradiction.

case 4) $B \ge 3$: $f = u, \gamma = 2(\nu_1 - 2)(f + B\nu_1 - 2\nu_1) \ge 2(\nu_1 - 2)(u + \nu_1)$. Hence,

$$\zeta = \nu_1 + 3 - \theta_{\nu_1} \le \nu_1 + 3 - 2(\nu_1 - 2)(u + \nu_1) \le \nu_1(1 - 4 - 2\nu_1) + 3 - 2(\nu_1 - 2) < 0;$$

a contradiction.

When u > 1, by the similar way, we can derive a contradiction.

19.3 case $\beta = 8$

Then $\rho_{\nu_1} = 4$; Hence, by Lemma 11,

$$4 = \zeta_{\nu_1} + \theta_{\nu_1}$$
.

First assume that $\theta_{\nu_1} = 0$.

Then $\sigma = 2\nu_1$ and $f + B\nu_1 - 2\nu_1 = 0$.

$$4 = F(\nu_1) = (\nu_1 - 3)x_1 + 2(\nu_1 - 4)x_2 + 3(\nu_1 - 5)x_3 + \cdots$$

To find the maximal ν_1 , we suppose that $4 \ge x_1(\nu_1 - 3)$. Then $\nu_1 \ge 7$.

• case $\nu_1 = 7$. From hypothesis, it follows that $x_1 = 1$ and $x_j = 0$ if $j \neq 1$. Therefore, since $\sigma = 14, g_0 = 13^2 = 169$, we obtain

$$1 = x_1 = t_3 + t_6, t_3 + t_6 + t_2 + t_7 = 11, 3t_3 + 15t_6 + t_2 + 21t_7 = 169$$

$$2t_3 + 14t_6 + 20t_7 = 158$$
; $6t_6 + 10t_7 = 78$.

 $3t_6 + 5t_7 = 39$; hence, $t_6 = 3$; a contradiction.

• case $\nu_1 = 6$. From hypothesis, it follows that $4 = F(6) = 3x_1 + 4x_2$. Then $t_4 = x_2 = 1$. Since $\sigma = 12, g_0 = 11^2 = 121$,

$$t_4 + t_2 + t_6 = 11,6t_4 + t_2 + 15t_6 = 121,$$

 $14t_6 = 105$, a contradiction.

• case $\nu_1 = 5$. From hypothesis, it follows that $4 = F(5) = 2x_1$. Then $t_3 + t_4 = x_1 = 2$. Since $\sigma = 10, g_0 = 9^2 = 81$,

$$t_3 + t_4 + t_2 + t_5 = 11, 3t_3 + 6t_4 + t_2 + 10t_5 = 81,$$

 $2t_3 + 5t_4 + 9t_5 = 70, 3t_4 + 9t_5 = 66; t_4 + 3t_5 = 22.$ Therefore, $t_4 = 1, t_3 = 1, t_5 = 7, t_2 = 2$ and the type is $[10 * 10; 5^7, 4, 3, 2^2]$ or its associates.

• case $\nu_1 = 4$. From hypothesis, it follows that $4 = F(4) = x_1$. Then $t_3 = x_1 = 4$. Since $\sigma = 8, g_0 = 7^2 = 49$, we obtain

$$t_3 + t_2 + t_4 = 11, 3t_3 + t_2 + 6t_4 = 49,$$

 $2t_3 + 5t_4 = 38, 5t_4 = 30; t_4 = 6, t_3 = 4, t_2 = 1.$ The type is $[8 * 8; 4^6, 3^4, 2]$ or its associates.

19.3.1 case $\theta_{\nu_1} > 0$

Second, assume that $\theta_{\nu_1} > 0, p > 0$.

By $4 = \rho_{\nu_1} > 3\nu_1 - 5$, $9 > 3\nu_1$, which contradicts the hypothesis $\nu_1 \ge 4$.

Third, assume that $\theta_{\nu_1} > 0, p = 0$. Then $\tilde{A} = 0$ and $4 = \zeta + \theta_{\nu_1}, \theta_{\nu_1} = \gamma = 2(\nu_1 - 2)(f + \nu_1 B - 2\nu_1) > 0$.

We shall study in the following cases 1) B = 0, 2) B = 1 and 3) $B \ge 2$, separately.

case 1)
$$B = 0$$
: $f = \sigma + u = 2\nu_1 + u$, $\gamma = 2(\nu_1 - 2)(f - 2\nu_1) = 2(\nu_1 - 2)u$.

case 2)
$$B = 1$$
: $f = \nu_1 + u, \gamma = 2(\nu_1 - 2)(f - \nu_1) = 2(\nu_1 - 2)u$.

case 3)
$$B = 2$$
: $f = u, \gamma = 2(\nu_1 - 2)f = 2(\nu_1 - 2)u$.

In any case,

$$4 = \zeta + \theta_{\nu_1} \ge 2(\nu_1 - 2)u \ge 4u \ge 4$$
.

Thus $u = 1, \zeta = 0, \nu_1 = 4, \sigma = 8, g_0 = 56$.

$$t_3 = 0, t_2 + t_4 = 11, t_2 + 6t_4 = 56.$$

 $5t_4 = 45; t_4 = 9, t_2 = 2$ and the type is $[8 * 9; 4^9, 2^2]$ or its associates.

19.4 case $\beta = 9$

Then $r = 12, \rho_{\nu_1} = 5 - \nu_1$; Hence, by Lemma 11,

$$5 - \nu_1 = \zeta_{\nu_1} + \theta_{\nu_1}$$
.

First assume that $\zeta_{\nu_1} > 0$.

From $5 - \nu_1 \ge \zeta_{\nu_1} \ge \nu_1 - 3$, it follows that $\nu_1 = 4, \sigma = 8, g_0 = 49, 1 = \zeta_{\nu_1} = F(4) = x_1$.

$$t_3 = 1, t_3 + t_2 + t_4 = 12, 3t_3 + t_2 + 6t_4 = 49.$$

Hence, $2t_3 + 5t_4 = 37, 5t_4 = 35; t_4 = 7, t_3 = 1, t_2 = 4$. The type is $[8 * 8; 4^7, 3, 2^4]$ or its associates.

Second assume that $\zeta_{\nu_1} = 0$.

Suppose that A > 0.

Since $\tilde{A} + \gamma \geq 3\nu_1 - 5$, it follows that $5 - \nu_1 \geq 3\nu_1 - 5$; hence, $10 \geq 4\nu_1$, which contradicts the hypothesis $\nu_1 \geq 4$.

Suppose that $\tilde{A} = 0$. Then $5 - \nu_1 \ge 2(\nu_1 - 2)$; hence, $9 \ge 3\nu_1$, which contradicts the hypothesis $\nu_1 \ge 4$.

Therefore, we have established the classification of pairs (S, D) with $g(D) = 0, \kappa[D] = 2, P_2[D] = 3$ as follows:

Theorem 12 Pairs (S, D) with $g(D) = 0, \kappa[D] = 2, P_2[D] = 3$ are classified as follows:

- 1. If $D^2 = -6$ then r = 9 and
 - (a) if $\sigma = 15$ then the type is $[15 * 22, 1; 7^9]$.
 - (b) If $\sigma = 16$ then the type is $[16 * 16; 8^6, 7^2, 6]$ or its associates.
 - (c) If $\sigma = 20$ then the type is $[20 * 20; 10^7, 9, 5]$ or its associates.
- 2. If $D^2 = -7$ then r = 10 and
 - (a) If $\sigma = 9$ then the type is $[9 * 13, 1; 4^{10}]$.
 - (b) If $\sigma = 10$ then the type is $[10 * 10; 5^6, 4^3, 3]$ or its associates.
 - (c) If $\sigma = 12$ then the type is $[12*12; 6^7, 5, 3^2]$ or $[12*12; 6^6, 5^3, 2]$ or their associates.
 - (d) If $\sigma = 14$ then the type is $[14 * 14; 7^7, 6, 4, 2]$.
- 3. If $D^2 = -8$ then r = 11 and
 - (a) if $\sigma = 7$ then the type is $[7 * 10, 1; 3^{11}]$.
 - (b) If $\sigma = 8$ then the type is $[8 * 8; 4^6, 3^4, 2]$ or $[8 * 9; 4^9, 2^2]$ or their associates.
 - (c) If $\sigma = 10$ then the type is $[10 * 10; 5^7, 4, 3, 2^2]$ or its associates.
- 4. If $D^2 = -9$ then r = 12 and the type is $[8 * 8; 4^7, 3, 2^4]$ or $[6 * 7; 3^9, 2^3]$ or their associates.
- 5. If $D^2 = -10$ then r = 13 and the type is $[6*6; 3^6, 2^7]$ or its associates.
- 6. If $D^2 = -11$ then r = 14 and the type is $[5*7, 1; 2^{14}]$.
- 7. If $D^2 = -12$ then r = 15 and the type is $[4*6;2^{15}]$ or its associates.

Note that pairs (S,D) with $g(D) > 0, P_2[D] = 3$ are enumerated as follows:

Proposition 21 Pairs (S,D) with $g(D) > 0, \kappa[D] = 2, P_2[D] = 3$ are classified as follows:

- 1. If $\kappa[D] = 1$ then g = 2 the type is [2*3;1] or its associates, where $D^2 = Z^2 = 0$.
- 2. If $\kappa[D] = 2$ then g = 1 and
 - (a) if $D^2 = -3$, then the type is $[12 * 12; 6^6, 5^3]$ or its associates.
 - (b) If $D^2 = -4$, then the type is $[8 * 8; 4^6, 3^4]$ or $[8 * 9; 4^9, 2]$ or $[10 * 10; 5^7, 4, 3, 2]$ or their associates.
 - (c) If $D^2 = -5$, then the type is $[6*7;3^9,2^2]$ or $[8*8;4^7,3,2^3]$ or their associates.
 - (d) If $D^2 = -6$, then the type is $[6*6; 3^6, 2^6]$ or its associates.
 - (e) If $D^2 = -7$, then the type is $[5*7, 1; 2^{13}]$.
 - (f) If $D^2 = -8$, then the type is $[4*6; 2^{14}]$ or its associates

20 invariant ψ

The invariant ψ defined to be $\Omega - \omega$ is non-negative, if $\sigma \geq 6$ except for the type $[6*8,1;2^r]$. Next, we shall compute A,α,Ω and ω for pairs with $\nu_1 \leq 3$ as follows.

20.1 examples

If the type is $[\sigma * e, B; 3^{t_3}, 2^{t_2}]$, then letting f be $e - B\sigma$, we obtain

$$D^{2} = \sigma \tilde{B} - 9t_{3} - 4t_{2} = \tau_{0} - 9t_{3} - 4t_{2},$$

$$Z^{2} = (\sigma - 2)(\tilde{B} - 4) - 4t_{3} - t_{2} = \tau_{2} - 4t_{3} - t_{2},$$

$$g = \frac{(\sigma - 1)(\tilde{B} - 2)}{2} - 3t_{3} - t_{2} = \frac{\tau_{1}}{2} - 3t_{3} - t_{2}.$$

Hence,

$$\begin{split} A &= \tau_2 - \frac{\tau_0}{2} + 1 - t_3 &= \frac{\tau_3}{2} - 1 - t_3, \\ \alpha &= \sigma \tilde{B} - 4\sigma - 2\tilde{B} - 3t_3 &= \tau_2 - 8 - 3t_3, \\ \Omega &= \sigma \tilde{B} - 8\sigma - 4\tilde{B} + 24 + t_2 &= \tau_4 - 8 + t_2, \\ \omega &= \frac{\sigma \tilde{B} - 6\sigma - 3\tilde{B}}{2} + t_2 &= \frac{\tau_3}{2} - 9 + t_2. \end{split}$$

Therefore,

$$\psi = \Omega - \omega = \sigma \tilde{B}/2 - 5\sigma - 5\tilde{B}/2 + 24 = (\sigma - 5)(\tilde{B} - 10)/2 - 1 = \tau_5/2 - 1$$
.

If $\sigma \geq 6$ and $\psi < 0$ then $\tilde{B} = 10$ and therefore, the type is $[6 * 8, 1; 2^r]$ and in this case $\psi = -1$.

If $\sigma \geq 6$ and $\psi = 0$ then $\tau_5 = 2$; hence, either 1) $\sigma = 6, \tilde{B} = 12$ or 2) $\sigma = 7, \tilde{B} = 11$.

In the case 1), the type is $[6*6;3^{t_3},2^{t_2}]$ or their associates;

In the case 2), the type is $[7*9,1;2^{t_2}]$ or their associates because $2 = f \ge \nu_1$.

If $\sigma \geq 6$ and $\psi = 1$ then $\tau_5 = 4$; hence, $\sigma = 6, \tilde{B} = 14$; the type is $[6*7; 3^{t_3}, 2^{t_2}]$ or their associates;

If $\sigma \geq 6$ and $\psi = 2$ then $\tau_5 = 6$; hence, 1) $\sigma = 6, \tilde{B} = 16$ or 2) $\sigma = 7, \tilde{B} = 13$ or 3) $\sigma = 8, \tilde{B} = 12$.

In case 1), the type is $[6*8;3^{t_3},2^{t_2}]$ or their associates.

In case 2), the type is $[7*10,1;3^{t_3},2^{t_2}]$ or their associates;

In case 3), the type is $[8*10,1;2^r]$ or their associates.

In that follows, we assume that $\nu_1 \geq 4$.

20.2 pairs with small ψ

Under the assumption that $\sigma \geq 6$ and $\psi \geq 0$, we shall determine the type of pairs with small ψ . Say $\psi = 0, 1, 2$.

Putting $\overline{g} = g - 1$, we obtain

$$\omega = 3\overline{g} - D^2 \ge 0, \ \Omega = 3Z^2 - 4\overline{g} = \omega + \psi.$$

Thus,

$$D^2 = 3\overline{g} - \omega$$
, $Z^2 = \frac{4\overline{g} + \omega + \psi}{3}$.

Since $\overline{g} + \omega + \psi = 3Z^2 - 3\overline{g} = 3A$, introduce a parameter k by k = A - 1; hence, $\overline{g} + \omega + \psi = 3k + 3$.

Then

$$D^2=4\overline{g}+\psi-3k-3,\ Z^2=\overline{g}+k+1,$$

and

$$8 - r = K_S^2 = Z^2 + D^2 - 4\overline{g} = \overline{g} + \psi - 2k - 2.$$

Hence,

$$\overline{q} - r = 2\overline{q} + \psi - 2k - 10$$
.

Suppose that k < 0. Then k = -1 and 1) $g = 1, \omega = \psi = 0$ or 2) $g = 0, \omega + \psi = 1$. In the case 1), $\Omega = 0$. However, $\Omega = 3Z^2 - 4\overline{g} = 3Z^2 \ge 3$; a contradiction.

In the case 2), $\Omega=1$. However, $1=\Omega=3Z^2-4\overline{g}=3Z^2+4\geq 4\geq 4$; a contradiction.

Therefore, $k \geq 0$ and

$$\xi_0 = 8 - \frac{D^2}{2} + \overline{g} - r = \frac{\psi - k - 1}{2},$$

and thus

$$\xi_1 = 4\overline{g} - D^2 = 3k + 3 - \psi$$
.

Then by Lemma, we obtain

$$\zeta_{\nu_1} = (\psi - k - 1)\nu_1 + 3k + 3 - \psi + \tilde{\eta}.$$

Supposing that $\nu_1 \geq 4$, we shall enumerate types of pairs satisfying the above equation under the hypothesis $\psi = 0, 1, 2$.

First, we note that if $\psi = 2$ then k > 0 or g = 0.

Claim 9 If $\psi = 2$ then k > 0 or g = 0.

Actually, suppose that k=0. Then $\omega + \overline{g} = 1$. Hence, 1) $\omega = 1, \overline{g} = 0, \Omega = 3 \text{ or 2})$ $\omega = 0, \overline{g} = 2, \Omega = 3 \text{ or 3})$ $\omega = 2, \overline{g} = -1, \Omega = 4$.

In the case 1), $D^2=-1, Z^2=1, r=10-2-\overline{g}=8$. Therefore, $K_S^2=0$ and then by Riemann-Roch, $|-K_S|\neq\emptyset$. Hence, $-K_S\cdot(2Z-D)\geq0$. But

$$0 \le -K_S \cdot (2Z - D) = -(Z - D) \cdot (2Z - D) = -2Z^2 - D^2 = -1.$$

This is a contradiction.

In the case 2), $\Omega=2, Z^2=2, g=2$. But by the previous result, $Z^2=g=2$ implies that $\nu_1=2$, which contradicts the hypothesis $\nu_1\geq 4$.

In the case 3), $D^2=-5, Z^2=0, r=9.$ Therefore, since $Z^2=0$, it follows that g=0.

Note that in the case 3), the type becomes either $[10 * 11; 5^9]$ or $[12 * 12; 6^7, 5, 4]$ or their associates.

20.3 case $p \ge 1$

First assume that $p \ge 1$. Then by Lemma, $\tilde{\eta} \le (\delta_{1,B} + 2 - 2\nu_1)p$. Hence,

$$0 \le \zeta_{\nu_1} \le (\psi - k - 1)\nu_1 + 3k + 3 - \psi + (\delta_{1,B} + 2 - 2\nu_1)p$$

$$= (\psi - k - 3)\nu_1 + 3k + 5 + \delta_{1,B} - \psi + (p - 1)(\delta_{1,B} + 2 - 2\nu_1)$$

$$= (\psi - k - 3)(\nu_1 - 3) + (p - 1)(\delta_{1,B} + 2 - 2\nu_1) - 4 + 2\psi + \delta_{1,B}$$

$$\le -4 + 2\psi + \delta_{1,B}.$$

Therefore, since $\nu_1 \geq 4$, it follows that $\psi = 2, \nu_1 = 4, p = 1, \sigma = 9, k = 0, g = 0$. Hence, $3 = 3k + 3 = -1 + \omega + \psi = -1 + \omega + 2$. This implies that $\omega = 2, \omega = -3 - D^2$. Therefore, $D^2 = -5, g = 0$. But by Theorem , $\sigma = 10, 12$, which contradicts $\sigma = 9$. But $\nu_1 \geq 4$ is assumed.

20.4 case p = 0

Then $\eta = 2(\nu_1 - 2)(2\nu_1 - B\nu_1 - f) \le 0$ and

$$0 \le \zeta_{\nu_1} = (\psi - k - 1)\nu_1 + 3k + 3 - \psi + \eta.$$

If $\psi = 0$ then $0 \le \zeta_{\nu_1} = (3 - \nu_1)(k+1) + \eta \le (3 - \nu_1)(k+1)$. This implies that $\nu_1 = 3$ and $\eta = 0$. Hence, the type becomes $[6*6; 3^{t_3}, 2^{t_2}]$ or its associates. Note that $k = t_2 = \omega$.

20.5 case $\psi = 1$

If $\psi = 1$ then $0 \le \zeta_{\nu_1} = -\nu_1 k + 3k + 2 + \eta$.

If $\eta \neq 0$ then $\eta \leq 4 - 2\nu_1$ and hence,

$$0 \le -\nu_1 k + 3k + 2 + 4 - 2\nu_1 = -(k+2)\nu_1 + 3k + 6 = -(k+2)(\nu_1 - 3).$$

However, since $\nu_1 \geq 4$, it follows that -(k+2) < 0, a contradiction.

Suppose that $\eta = 0$,i.e., $\tilde{B} = 4\nu_1$ and $g_0 = (2\nu_1 - 1)^2$. Since $\zeta_{\nu_1} = -\nu_1 k + 3k + 2 = F(\nu_1)$, it follows that case A): $-\nu_1 k + 3k + 2 = F(\nu_1) = 0$ or case B): $-\nu_1 k + 3k + 2 = F(\nu_1) \ge \nu_1 - 3$.

In the case A), $-\nu_1 k + 3k + 2 = k(3 - \nu_1) + 2 = 0$. Hence, 1) $\nu_1 = 5, k = 1$ or $2)\nu_1 = 4, k = 2$.

In the case B), it follows that $\nu_1 \leq \frac{3k+5}{k+1}$. In particular, if k=0 then $\nu_1 \leq 5$. Moreover, if k=1 then $\nu_1 \leq 4$.

• Suppose that $\nu_1 = 5$. In both cases A) and B), k = 0, 1, 2. Hence, $g_0 = 81, r = 10 - \psi - \overline{g} + 2k = 10 - g + 2k$

In the case A), $k = 1, r = 12 - g, t_3 = t_4 = 0$. By genus formula, we get

$$t_2 + t_3 + t_4 + t_5 = r = 12 - g, t_2 + 3t_3 + 6t_4 + 10t_5 = 81 - g.$$

So,

$$t_2 + t_5 = r = 12 - g, t_2 + 10t_5 = 81 - g; 9t_5 = 69.$$

This is a contradiction.

In the case B), k = 0, r = 10 - g and $\zeta_{\nu_1} = 2 = (5 - 3)x_1$, which induces that $x_1 = 1, x_1 = t_3 + t_4$. By genus formula, we get

$$t_2 + t_3 + t_4 + t_5 = r = 10 - g$$
, $t_2 + 3t_3 + 6t_4 + 10t_5 = 81 - g$.

Hence, $2t_3 + 5t_4 + 9t_5 = 71$; $3t_4 + 9t_5 = 71 - 2 = 69$. Therefore, $t_4 + 3t_5 = 23$. Hence, $t_5 = 7$, $t_4 = 2$, $t_3 = -1$, that is a contradiction.

• If $\nu_1 = 4$, then k = 0, 1, 2; $g_0 = 49, r = 10 + 2k - 1 - \overline{g} = 10 + 2k - g$. Hence, $\zeta_{\nu_1} = 2 - k = x_1$, which induces that $x_1 = t_3 = 2 - k$. By genus formula, we get

$$t_2 + t_3 + t_4 = r = 10 + 2k - q, t_2 + 3t_3 + 6t_4 = 49 - q.$$

Hence, $2t_3+5t_4=39-2k; t_4=7, t_3=2-k, t_2=1+3k-g$. The type becomes $[8*8;4^7,3^{2-k},2^{1+3k-g}]$ or its associates. Here, $\omega=2+t_2=3+3k-g, \Omega=3+t_2=4+3k-g$ and $\psi=\Omega-\omega=1$. Moreover,k=0,1,2 and $g\leq 7$.

20.6 case $\psi = 2$

First note that when $\psi = 2$, k = 0 implies that g = 0 and the type has already been eumerated. So we assume k = 0.

Second, since $\psi = 2$ and p = 0, it follows that

$$0 < \zeta_{\nu_1} = (1 - k)\nu_1 + 3k + 1 + \eta$$
.

• If $\eta \neq 0$ then $\eta = 2(\nu_1 - 2)(2\nu_1 - B\nu_1 - f) < -2(\nu_1 - 2)$ and thus

$$0 < \zeta_{\nu_1} < (1-k)\nu_1 + 3k + 1 - 2(\nu_1 - 2)$$
.

Then $(k+1)\nu_1 \leq 3k+5$, which implies that $\nu_1 \leq 4$.

• If $\nu_1 = 4$ then k = 1 and $\zeta_4 = 4 + \eta \le 0$. Moreover, $2\nu_1 - B\nu_1 - f = -1$, i.e. 4B + f = 9 and so $\tilde{B} = 18, \zeta_4 = 0$. This implies that $t_3 = 0, g_0 = 56$. By $r = 10 + 2k - \psi - \overline{g} = 11 - g$ and genus formula

$$t_2 + t_4 = 11 - g$$
, $t_2 + 6t_4 = 56 - g$.

Hence, $t_4 = 9$, $t_2 = 2 - g$. Thus the type becomes $[8 * 9; 4^9, 2^{2-g}]$.

20.7 case $\eta = 0$

In this case, $\tilde{B} = 4\nu_1$.

From $\zeta_{\nu_1} = (1-k)\nu_1 + 3k + 1 = F(\nu_1)$, we obtain two cases: case A): $(1-k)\nu_1 + 3k + 1 = F(\nu_1) = 0$ and case B): $(1-k)\nu_1 + 3k + 1 = F(\nu_1) \neq 0$. In the case A), $(\nu_1 - 3)(k - 1) = 4$. Hence, 1) $\nu_1 = 7, k = 2$ or 2) $\nu_1 = 5, k = 3$ or 3) $\nu_1 = 4, k = 5$.

- If $\nu_1 = 7, k = 2$ then $g_0 = 169, r = 13 g$. Since $F(\nu_1) = 0$, it follows that $t_3 = \cdots = t_6 = 0$. By genus formula, $t_2 + t_7 = 13 g$, $t_2 + 21t_7 = 169 g$. Hence $20t_7 = 156$; a contradiction.
- If $\nu_1 = 5, k = 3$ then $g_0 = 81, r = 15 g$. Since $F(\nu_1) = 0$, it follows that $t_3 = t_4 = 0$. By genus formula, $t_2 + t_5 = 15 g$, $t_2 + 10t_7 = 81 g$. Hence $9t_5 = 66$; a contradiction.
- If $\nu_1 = 4, k = 5$ then $g_0 = 49, r = 19 g$. Since $F(\nu_1) = 0$, it follows that $t_3 = 0$. By genus formula, $t_4 = 6, t_2 = 13 g$. Thus the type is $[8*8; 4^6, 2^{13-g}]$ or their associates.

In the case B),

$$0 \le \zeta_{\nu_1} = (1-k)\nu_1 + 3k + 1 = F(\nu_1) \ge \nu_1 - 3,$$

and so $\nu_1 \le \frac{3k+4}{k} = 3 + \frac{4}{k} \le 7$.

• If $\nu_1 = 7$, then $k = 1, \sigma = 14, \tilde{B} = 28$ and

$$4 = F(\nu_1) = F(7) = (7-3)x_1 + \cdots$$

Thus $x_1 = t_3 + t_6 = 1$, $x_2 = x_3 = 0$. Since $r = 10 + 2k - \psi - g + 1$, we obtain

$$t_2 + t_3 + t_6 + t_7 = 11 - q$$
, $t_2 + 3t_3 + 15t_6 + 21t_7 = 169 - q$.

From this, it follows that $3t_6 + 5t_7 = 39, t_6 = 0, 1$; a contradiction.

• If $\nu_1 = 6$, then $\sigma = 12$, $g_0 = 121$ and $k \le \frac{4}{\nu_1 - 3} = \frac{4}{3}$. Hence k = 1, $4 = F(\nu_1) = F(6) = 3x_1 + 4x_2$; thus $x_2 = t_4 = 1$, $x_1 = t_3 = t_5 = 0$. Since $r = 10 + 2k - \psi - g + 1 = 11 - g$, we obtain

$$t_2 + t_4 + t_6 = 11 - g$$
, $t_2 + 6t_4 + 15t_6 = 1 = 121 - g$.

Then $14t_6 = 105$; a contradiction.

• If $\nu_1 = 5$, then $\sigma = 10, g_0 = 81$ and $k \le \frac{4}{\nu_1 - 3} = \frac{4}{2} = 2$. Hence k = 1, 2. Further, $6 - 2k = F(\nu_1) = F(5) = 2x_1$; thus $x_1 = t_3 + t_4 = 3 - k$. By genus formula,

$$t_2 + t_3 + t_4 + t_5 = 9 + 2k - g$$
, $t_2 + 3t_3 + 6t_4 + 10t_5 = 81 - g$.

Hence, $3t_4 + 9t_5 = 66$. Then $t_5 = 7, t_4 = 1, t_3 = 2 - k, t_2 = 3k - g - 1$. The type becomes $[10*10; 5^7, 4, 3^{2-k}, 2^{3k-g-1}]$ or its associates. In this case, $\Omega = 7 - g, \omega = 3k - g - 1$.

• If $\nu_1 = 4$, then $\sigma = 8$, $g_0 = 49$ and $k \le \frac{4}{\nu_1 - 3} = \frac{4}{1} = 4$. Hence k = 1, 2, 3, 4. Further, $5 - k = F(\nu_1) = F(4) = x_1$; thus $x_1 = t_3 = 5 - k$. By genus formula,

$$t_2 + t_3 + t_4 = r = 9 + 2k - q$$
, $t_2 + 3t_3 + 6t_4 = 49 - q$.

Then $k = 1, t_4 = 6, t_3 = 5 - k = 4, t_2 = 3k - g - 2 = 1 - g$. Thus the type becomes $[8*8; 4^6, 3^{5-k}, 2^{3k-2-g}]$ or its associates, where $g \le 1$. In this case, $\Omega = 6, \omega = 4$.

20.8 classification by $P_{3,1}[D]$

Consequently, we obtain the following result.

Theorem 13 Suppose that a minimal pair (S,D) is derived from a #-minimal pair (Σ_B,C) of type $[\sigma*e,B;\nu_1,\cdots,\nu_r]$ where $\sigma \geq 3$ or (S,D) is just (\mathbf{P}^2,D) of type [d;1] where $d\geq 9$.

- 1. case $P_{3,1}[D] = 0$. Then either $\sigma \le 5$ or the type is $[6*8,1;2^r]$, where g = 20 r.
- 2. case $P_{3,1}[D] = 1$. Then
 - (a) the type becomes $[6*6;3^{t_3},2^{t_2}]$, where $t_3 \le 8, t_2 = 25-3t_3-g$ or their associates or
 - (b) $[7*9,1;2^{27-g}]$.
 - (c) The type is [9; 1].
- 3. $case P_{3,1}[D] = 2$. Then
 - (a) the type becomes $[6*7;3^{t_3},2^{t_2}]$ or their associates or
 - (b) $[8*8;4^7,3^{2-k},2^{1+3k-g}]$ or their associates.
- 4. case $P_{3,1}[D] = 3$.
 - (a) If $\sigma = 6$ then the type becomes $[6 * 8; 3^{t_3}, 2^{t_2}]$ or its associates.
 - (b) If $\sigma = 7$ then the type becomes $[7 * 10, 1; 3^{t_3}, 2^{t_2}]$.
 - (c) If $\sigma = 8$ then the type becomes
 - i. $[8*8; 4^6, 3^{5-k}, 2^{3k-g-2}]$, where $k \le 5, g \le 3k-2$ or
 - ii. $[8*9;4^9,2^{2-g}]$, where $g \leq 2$ or their associates or
 - iii. $[8*10,1;2^g]$, where $g \leq 35$ or their associates.
 - (d) If $\sigma = 10$ then the type becomes
 - i. $[10*10; 5^7, 4, 3^{2-k}, 2^{3k-g-1}]$ or its associates, where $g \leq 2, or$
 - ii. $[10*11;5^9]$ where g=0 or its associates.
 - (e) If $\sigma = 12$ then the type becomes $[12*12;6^7,5,4]$ or its associates where g = 0.
 - (f) The type is [10;1].

21 relations between Z^2 and D^2

Next, we shall study relations between Z^2 and D^2 . First , we suppose that $\nu_1 \leq 2$.

Figure 5: relations between D^2 and Z^2 , with $\sigma \ge 6$

Figure 6: relations between D^2 and Z^2 , with $\sigma \geq 6$

21.1 Case $\nu_1 \leq 2$

If a minimal pair (S, D) with $\kappa[D] = 2$ is derived from a #- minimal model of type $[\sigma * e, B; 2^r]$, then

$$D^2 = \sigma \tilde{B} - 4r, \ 2\overline{g} = \sigma \tilde{B} - 2\sigma - \tilde{B} - 2r,$$

$$Z^2 = K_S^2 - D^2 + 4\overline{g} = 8 - r - \sigma \tilde{B} + 4r + 2(\sigma \tilde{B} - 2\sigma - \tilde{B} - 2r),$$

$$Z^2 = 8 - r + (\sigma - 2)\tilde{B} - 4\sigma.$$

Eliminating \overline{g} and \tilde{B} from these, we obtain

$$\sigma Z^2 = (\sigma - 2)D^2 + (3\sigma - 8)r - 4\sigma(\sigma - 2).$$

In particular, if $\sigma = 3$ then

$$3Z^2 = D^2 - 12$$
.

If $\sigma = 4$ then

$$2Z^2 = D^2 + 2r - 16$$
.

If $\sigma = 5$ then

$$5Z^2 = 3D^2 + 7r - 40.$$

21.2 Case $\sigma \geq 6$

Hereafter, we suppose that $\sigma \geq 6$. If the type is not $[6*8,1;2^r]$ then by Theorem $|3Z-2D| \neq \emptyset$ and so

$$2\psi = 2(3Z^2 - 7\overline{g} + D^2) = (3Z - 2D) \cdot (2Z - D) \ge 0.$$

Therefore,

$$3Z^2 + D^2 \ge 7\overline{g} \ge -7.$$

Furthermore, define $\Xi = 9Z^2 - 4D^2$. Then from

$$3\psi = 3(3Z^2 + D^2 - 7\overline{g}) = 9Z^2 + 3D^2 - 21\overline{g} = \Xi - 7(3\overline{g} - D^2)$$

it follows that

$$\Xi = 3\psi + 7\omega$$

which is nonnegative when $\sigma \geq 7$ as the type is not $[6*8,1;2^r]$. Hence, in this case,

$$9Z^2 > 4D^2$$
.

Moreover, if $9Z^2-4D^2=0$ then $\omega=0, \psi=0$. Then $3Z-2D\sim D+3K\sim 0$. Furthermore, if $\Xi=9Z^2-4D^2>0$ then $\Xi=3,6,7\cdots$.

21.3 Plane curves with only double points

Suppose that the type is $[d; 2^r]$. Then

$$Z^2 = (d-3)^2 - r, D^2 = d^2 - 4r.$$

Hence,

$$3Z^2 + D^2 + 7 = \frac{d^2 - 15d + 54}{2} + 7g, \quad 9Z^2 - 4D^2 = (d - 9)(5d - 9) + 7r.$$

If d = 8 then

$$3Z^2 + D^2 + 7 = -1 + 7g$$
, $9Z^2 - 4D^2 = 7r - 31$.

Therefore, if the type is $[6*8,1;2^r]$ with r<5, then $9Z^2-4D^2=7r-31<0$.

References

- [1] Encyclopaedia Britanica CD, 1999.
- [2] Coolidge J.L., A Treatise on Algebraic Plane Curves, Oxford Univ. Press., (1928).
- [3] Hartshorne R., Curves with high self-intersection on algebraic surfaces Publ.I.H.E.S. vol.36, (1970), 111-126.
- [4] Iitaka S., Algebraic Geometry, An Introduction of Birational Geometry of Algebraic Varieties, Springer Verlag. (1981).
- [5] Iitaka S., Basic structure of algebraic varieties, Advanced Studies of Pure Mathematics, 1, 1983, Algebraic Varieties and Analytic Varieties, Kinokuniya (1983) 303–316.
- [6] Iitaka S., On irreducible plane curves, Saitama Math. J. 1 (1983), 47–63.
- [7] Iitaka S., Birational geometry of plane curves ,Tokyo J. Math., 22(1999), pp289-321.
- [8] Kodaira K., On compact analytic surfaces II, Ann. of Math., 77(1963), 563–626
- [9] Matsuda O., On birational invariants of curves on rational surfaces, in Birational Geometry of Pairs of Curves and Surfaces, Gakushuin Univ., (1997), 1-130.
- [10] Matsuda O., On numerical types of algebraic curves on rational surfaces, Tokyo Journal of Mathematics vol.24, No.2, pp.359-367, December 2001.
- [11] Matsuda O., Birational classification of curves on irrational ruled surfaces, Tokyo Journal of Mathematics vol.25, No.1, pp.139-151, June 2002.
- [12] Nagata M., On rational surfaces I., Mem. Coll. Sci. Univ. Kyoto 32, 351-370 (1960).
- [13] Sakai F., Semi-Stable curves on algebraic surfaces and logarithmic pluricanonical maps, Math. Ann. 254, (1980),89-120.

[14] Semple, J.G. and Roth, L. Introduction to Algebraic Geometry, Cambridge University Press , 1949.