ABC完全数

飯高 茂

2020/03/19

1 (A,B,C) 完全数

与えられた 整数 (A,B,C)(最大公約数は 1 とする) に対して $A\sigma(a)+B\varphi(a)-Ca=D$ の解 a を 定数項 D の (A,B,C) (3項完全数) という.

定数 k とそれの因子にならない素数 p について a=kp が (A,B,C) 完全数になる場合の素数 p が無数にある (a=kp:B 型解)とする.

 $A\sigma(k) + B\varphi(k) - Ck = 0$ を満たす k を (A,B,C) 完全数の固有完全数といい、これを k_0 とおく.

 $D_0 = A\sigma(k_0) - B\varphi(k_0)$ と書いて, D_0 を宇宙定数項という.

 $A\sigma(a) + B\varphi(a) - Ca = D_0$ の解を固有完全数 k_0 の (A,B,C) 宇宙完全数 とよぶ.

固有完全数と(A,B,C) 宇宙完全数を定めることが基本課題だが定数項 D を選ぶと(A,B,C) 宗全数に興味あるものが思る

2 (0,2,1) 宇宙完全数

はじめに最も易しい場合を扱う. 定数項 D の(0,2,1) 完全数 の方程式は $2\varphi(a)-a=D$.

 $k_0 = 2^e$ が 固有完全数. $D_0 = -2\varphi(k_0) = -2^e$ が宇宙定数項.

 $2\varphi(a) - a = D_0 = -2^e$ が (0,2,1) 宇宙完全数の方程式で $e = \eta$, L は素数 p となり,(0,2,1) 宇宙完全数は $a = 2^e p$, (p: 奇素数).

一方 $,2\varphi(a)-a=D=1$ の解5個はフェルマ素数の積という著しい特色を持つ.

表 1: $2\varphi(a) - a = 1$

\overline{a}	素因数分解
3	3
15	3*5
255	3*5*17
65535	3*5*17*257
4294967295	3*5*17*257*65537
83623935	3*5*17*353*929
6992962672132095	3*5*17*353*929*83623937

3 固有完全数1の定理

(A,B,C) 完全数の固有完全数 k_0 が1のときを考える.

 $A\sigma(k_0) + B\varphi(k_0) - Ck_0 = A + B - C = 0$. $k_0 = 1$ なので無数の素数 p が解となり宇宙定数項 D_0 は $D_0 = A - B$.

素数 $q(\neq p)$ がありそのべき $q^{\eta}, (\eta > 1)$ が解と仮定すると A = B - 1. さらに C = 2B - 1.

逆も成り立ち, $(B-1)\sigma(a) + B\varphi(a) - (2B-1)a = -1$ は素数 p を解に持つ.

定理 $\mathbf{1}(B-1)\sigma(a)+B\varphi(a)-(2B-1)a=-1$ がある素数のべき $q^{\varepsilon}, (\varepsilon > 1)$ を解に持つと B は素数qになり、素数 q のすべてのべき q^{η} が解になる.

B=2 なら (1,2,3) 完全数で $k_0=1$ のとき, 宇宙完全数は すべての奇素数 と 2^{ε} であると期待される.

B=3 なら (2,3,5) 完全数で $k_0=1$ のとき, 宇宙完全数は すべての奇素数 と 3^{ε} であると期待される.

表 2: $\sigma(a) + 2\varphi(a) - 3a = -1, 2\sigma(a) + 3\varphi(a) - 5a = -1$

(1 2 2) 		(2 2 L) L A W	
(1,2,3) 完全数		(2,3,5) 完全数	
a	素因数分解	a	素因数分解
2	2	2	2
3	3	3	3
4	2^2	5	5
5	5	7	7
7	7	9	3^2
8	2^3	11	11
11	11	13	13
13	13	17	17
16	2^4	19	19
17	17	23	23
19	19	27	3^{3}

表 3: $\sigma(a) + 2\varphi(a) - 3a = -1, 2\sigma(a) + 3\varphi(a) - 5a = -1$

-			
(1,2,3) 完全数		(2,3,5) 完全数	
a	素因数分解	a	素因数分解
23	23	29	29
29	29	31	31
31	31	37	37
32	2^5	41	41
37	37	43	43
41	41	47	47
43	43	53	53
47	47	59	59
53	53	61	61
59	59	67	67

B=5 なら (4,5,9) 完全数でそのとき 固有完全数 $k_0=1$ に対応する宇宙完全数は素数 p と 5^{ε} が解であり、後者が天与の解である.驚いたことに変な解がでてきた.

表 4: 4,5,9 = -1 の解, 素数を除く

a	素因数分解
21	3 * 7
25	5^2
125	5^{3}
625	5^4
3125	5^5
15625	5^6
78125	5^7
390625	5^8
1953125	5^{9}

非素数解を探したら, 5^e 以外に a = 21 = 3*7 がでた. 正直のところ, 我が目を疑った.

表 5: (6,7,13) = -1 の解,素数を除く

a	素因数分解
33	3 * 11
49	7^2
343	7^3
2401	7^4
4917	3 * 11 * 149
16807	7^5
117649	7^6
823543	7^7

非素数解を探したら, 7^e 以外に a = 33 = 3*11,4917 = 3*11*149 がでた.

(1,2,3) 完全数において、定数項 D=-2 の解は素数の積み上げ解.

表 6: $\sigma(a) + 2\varphi(a) - 3a = -2$ の解の表

$\underline{}$	素因数分解
6	2 * 3
30	2 * 3 * 5
870	2 * 3 * 5 * 29
745590	2*3*5*29*857
547931854230	2*3*5*29*857*734897
295923739527652742180310	2 * 3 * 5 * 29 * 857 * 734897 * 540073984097
9	3^2
20	$2^2 * 5$
272	$2^4 * 17$
65792	$2^8 * 257$
4295032832	$2^{16} * 65537$

 $\sigma(a) + 2\varphi(a) - 3a = -2$ の解はこれで尽きていると思われる. フェルマ素数は5つあって,終わりの3個の素数の最後は7.

(A,B,C) 完全数の一般理論で, A=0 の場合が最も扱いやすい. 最も簡単な h=3 の場合でも オイラー余関数の逆問題 $\cos(K)=3^{\psi}$ を解くことになり, Goldbach の予想がからむ本質的に困難な課題が出てきた.

4 $K - \varphi(K) = 3^{\psi}$ の解の表

表 7: $K - \varphi(K) = 3^{\psi}, \psi = 3, 4, 5$ の解

\overline{K}	qr	q	r	$3^{\psi} + 1$	q+r
$\psi = 3$		$3^{\psi} + 1 = 3^3 + 1$		28	
115	5 * 23	5	23		28
187	11 * 17	11	17		28
$\psi = 4$		$3^{\psi} + 1 = 3^4 + 1$		82	
781	11 * 71	11	71		82
1357	23 * 59	23	59		82
_1537	29 * 53	29	53		82

表 8: $K-\varphi(K)=3^{\psi}, \psi=3,4,5$ の解

\overline{K}	qr	q	r	$3^{\psi} + 1$	q+r
$\psi = 5$		$3^{\psi} + 1 = 3^5 + 1$		244	
1195	5 * 239	5	239		244
2563	11 * 233	11	233		244
3859	17 * 227	17	227		244
9259	47 * 197	47	197		244
10123	53 * 191	53	191		244
12283	71 * 173	71	173		244
14659	107 * 137	107	137		244
14803	113 * 131	113	131		244

2019 年の年の瀬に 11歳の少年梶田光が優れた定理を見出した.

5 梶田光の定理

定理 2 (梶田光,2019) $B\varphi(k)-Ck=0$ を満たす k が存在するとき B,C が互いに素 かつC が奇数とすると, B が素数で C=(B-1)/2. このとき解は $k=2^eB^f,e,f>0$.