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3.1. wikipedia. wikipedia(
)

In algebraic geometry, the Kodaira dimension «(X') measures
the size of the canonical model of a projective variety X.

Kodaira dimension is named for Kunihiko Kodaira.

The name and the notation k were introduced by Igor Sha-
farevich in the seminar Shafarevich 1965.

K

1itaka variety , Kodaira dimension
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1. Introduction

['will try to give a short survey of what is called Arithmetics of “Algebraic

Varmotioa? — Ha main vaailéa and snaklama



This description can be easily generalised to algebraic varieties of arbi-
trary dimension n. Namely, we consider rational differential forms of type
flduy A ... Aduy)™ for some fixed system of algebraically independent ratio-
nal functions uq,...,u, on X, a rational function f and m > 1. All regular
forms (i.e. having no poles on X) for fixed weight m form a finite dimensional
vector space (), and in the same way as before we obtain a rational mapping
om : X = P(Q,) into a projective space. It can be proved that for all m
sufficiently large and divisible by a fixed integer, the (closure of the) varieties
¢wm(X) are birationally isomorphic. So (up to birational isomorphism) there
exists a single variety I(X) isomorphic to all these ¢, (X), which is called the

A e e e BT T

0: X = I(X) (3)

of X onto I(X). Of course, if all ,,, = 0 neither the Iitaka variety nor the
mapping ¢ are defined. The dimension x of the variety I(X) is called the
Kodaira dimension of X. If all Q,, = 0 form > 1 and I(X) is not defined, we
set Kk = —00. So k can take the n + 2 values k = —00,0,1,... ,n.

(In this short survey we completely ignore the difficulties which arise in
connection with the fact that the variety I(X) and the fibres of the mapping
¢ may have singular points even when X has none. These difficulties are
overcome in cases n = 2 and n = 3 and there exists a program of resolving
them in the general case, known as “Mori’s program”.)

.



net

Kodaira dimension

A numerical invariant of an algebraic variety, named after K.
Kodaira

who first pointed out the importance of this invariant in the
theory of the classification of algebraic varieties.
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