2種類のシャフリングの関係性について

学習院大学理学部数学科

山口友加里

2008年2月5日

目的

この研究において、

- 2 つに分けて考えるシャフリング (modified perfect faro shuffle)
- 4つに分けて考えるシャフリング

の周期を比較し、2種類のシャフリングの関係性を研究した。

2つに分けるシャフリングの仕方

枚数8枚で考える

1 2 3 4 5 6 7 8半分で分ける。

1 2 3 4 5 6 7 8

後ろ半分を上に並べる。

5 6 7 8

1 2 3 4

左上から下へ順に並べていく。

5 1 6 2 7 3 8 4

4つに分けるシャフリングの仕方

枚数8枚で考える

1 2 3 4 5 6 7 8

4つに分ける。

3 4 5 6

後ろの組から上に並べる。

7 8

5 6

1 2

左上から下へ順に並べていく。

7 5 3 1 8 6 4 2

Prologの一例を挙げる。

?- shuffle([1, 2, 3, 4, 5, 6, 7, 8], 6).

[1, 2, 3, 4, 5, 6, 7, 8]

[5, 1, 6, 2, 7, 3, 8, 4]

[7, 5, 3, 1, 8, 6, 4, 2]

[8, 7, 6, 5, 4, 3, 2, 1]

[4, 8, 3, 7, 2, 6, 1, 5]

[2, 4, 6, 8, 1, 3, 5, 7]

[1, 2, 3, 4, 5, 6, 7, 8] <mark>6回目で元に戻る。</mark>

このようにシャフリングを繰り返すと元に戻る。

元に戻る回数を周期という。上の場合は周期は6である。

Table 1

枚数	周期(2つVer.)	周期(4つVer.)
4	4	2
6	3	
8	6	3
10	10	
12	12	6
14	4	
16	8	4
18	18	
20	6	3
22	11	
24	20	10
26	18	
28	28	14
30	5	

枚数を与えると周期がわかった。逆に周期を与えた場合、 枚数がわかるだろうか。

10枚で2つに分けるシャフリングを考える。 最初の並び方をxとし、1回シャフリングした時の並び方を yとする。

Table 2. 10 枚で 2 つに分けるシャフリング

X		1	2	3	4	5	6	7	8	9	10	
У		6	1	7	2	8	3	9	4	1	0 5	
2 y	12	2	1	4	4	16	6	18	3	8	20	10
2y - x	11	()	11	0	11	0	1	1	0	11	0

となる。

このことから

$$2y - x \equiv 0 \qquad \mod 11$$
$$y \equiv \frac{1}{2}x \qquad \mod 11 \cdots (1)$$

例えば、

$$2 \times 6 = 12 \equiv 1 \qquad \mod 11$$
$$6 \equiv \frac{1}{2} \qquad \mod 11$$

(1) に代入して

$$y \equiv 6x \mod 11$$

これを用いて考えると、

Table 3. xを6倍してmod 11で考える

X		1	2	3	4	5	6	7	8	9	10	
6 x	6	12)	18	24	3	0	36	4	2 4	48	54
6 x (mod11)		6	1	7	2	8	3	9	4	10) 5	

上図より、xをそれぞれ6倍してmod 11で考えると1回シャフリングしたyになる。

さらに、2回xをシャフリングしたものをzとすると、同様 にして

$$z \equiv 6y \mod 11$$

よって、 $y \equiv 6x \mod 11$ なので、

$$z \equiv 6 \times 6x = 6^2 x \mod 11$$

これを繰り返し、m回シャフリングをしたときに元に戻る としたら、

$$6^{\mathsf{m}} \mathsf{x} \equiv \mathsf{x} \mod 11$$

 $x \neq 0$ なのでxで両辺割ると、

$$6^{\mathsf{m}} \equiv 1 \mod 11$$

となる最小の整数mが周期となる。

計算していくと、m=10のときに元に戻るので、周期は10である。

また、 6^m は 2^m と書き直せる。

一般の場合

枚数2n枚のとき、

$$2^{\mathsf{m}} \equiv 1 \mod 2\mathsf{n} + 1$$

上の式を満たす最小の正の整数 m が周期となる。

周期と枚数の関係式

$$2^{m} - 1 = k(2n + 1)$$

これにより、周期からシャフリングする枚数を考えることができる。

<mark>例</mark>周期m=6のとき、周期と枚数の関係式に代入する。

$$2^{6} - 1 = k(2n + 1)$$
$$63 = k(2n + 1)$$

よって2n+1は3,7,9,21,63と考えられるから

$$2n = 2, 6, 8, 20, 62$$

よって周期が6のときの枚数は8枚、20枚、62枚である。

(注:枚数が2枚ならば周期が2、枚数が6枚のときは周期が3となり最小の整数ではないので除く。)

同様にして4つのシャフリングも考えることができる。 ただし、枚数は4枚からとなるので注意する。

周期と枚数の関係式

枚数を4n、周期をmとすると、

$$4^{m} - 1 = k(4n + 1)$$

結果の表を見てみると、枚数が4の倍数のとき、2つのシャフリングの周期は4つのシャフリングの周期の2倍であることがわかる。

Table 4. シャフリングの結果その1の1部分

枚数	周期(2つVer.)	周期(4つVer.)
4	4	2
6	3	
8	6	3
10	10	
12	12	6
14	4	
16	8	4

2つに分けるシャフリングと4つに分けるシャフリングの周期の関係式を考えたい。 2つに分けるシャフリングの周期をp、4つに分けるシャフリングの周期をmとする。

$$2^{\mathsf{p}} \equiv 1 \mod 2 \times 2\mathsf{n} + 1 \dots (1)$$

 $4^{\mathsf{m}} \equiv 1 \mod 4\mathsf{n} + 1 \dots (2)$

(2)を考える。

$$4^{\mathsf{m}} = 2^{2\mathsf{m}} \equiv 1 \qquad \mod 4\mathsf{n} + 1$$

これを(1)と比較して、

$$p = 2m$$

となり2つに分けるシャフリングの周期は4つに分けるシャフリングの周期の2倍であることがわかる。

しかし、2つに分けるシャフリングの周期が奇数のときの み

4つに分けるシャフリングの周期と一致することがわかった。